An empirical approach to retrieving monthly evapotranspiration over Amazonia

被引:16
|
作者
Juarez, R. I. Negron [1 ]
Goulden, M. L. [2 ]
Myneni, R. B.
Fu, R. [1 ]
Bernardes, S. [3 ,4 ]
Gao, H. [1 ]
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] Univ Calif Irvine, Irvine, CA USA
[3] Boston Univ, Dept Geog, Boston, MA 02215 USA
[4] Univ Georgia, Dept Geog, Athens, GA 30602 USA
关键词
D O I
10.1080/01431160802226026
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The extent of evapotranspiration (E T) over the Brazilian Amazon rainforest remains uncertain because in situ measurement sites do not cover the entire domain, and the fetch of these sites is only of the order of 103m. In this investigation we developed an empirical method to estimate E T over the Brazilian Legal Amazon (BLA). The work was based on an improved physical understanding of what controls E T over the Amazonia rainforest resulting from analyses of recent in situ observations. Satellite data used in this study include the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the surface radiation budget from the International Satellite Cloud Climatology Project (ISCCP). The empirical model was validated by measurements performed at four upland forest sites. The observed values and the calculated modelled values at these sites had the same mean and variance. On a seasonal scale, regional modelled E T peaks during the austral spring (September to November), as reported in the literature. In addition, the empirical model allows us to estimate the regional seasonal and interannual distributions of E T/precipitation rates.
引用
收藏
页码:7045 / 7063
页数:19
相关论文
共 50 条
  • [31] Temperature-based approaches for estimating monthly reference evapotranspiration based on MODIS data over North China
    X. Zheng
    Jiaojun Zhu
    Theoretical and Applied Climatology, 2015, 121 : 695 - 711
  • [32] Uncertainty over production forecasts: An empirical analysis using monthly quantitative survey data
    Morikawa, Masayuki
    JOURNAL OF MACROECONOMICS, 2019, 60 : 163 - 179
  • [33] Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China
    Luo, Jia
    Dou, Xianming
    Ma, Mingguo
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (20)
  • [34] Studying monthly rainfall over Dibrugarh, Assam: Use of SARIMA approach
    Hazarika, J.
    Pathak, B.
    Patowary, A. N.
    MAUSAM, 2017, 68 (02): : 349 - 356
  • [35] The distribution of income over life: an empirical approach
    Pascual, Marta
    APPLIED ECONOMICS LETTERS, 2006, 13 (07) : 431 - 434
  • [36] Operational retrieving of land surface evapotranspiration based on remote sensing technology
    Zhou, Chuan
    Niu, Zheng
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2009, 25 (07): : 124 - 130
  • [37] Spatiotemporal Variations of Evapotranspiration in Amazonia Using the Wavelet Phase Difference Analysis
    Zhang, Juan
    Feng, Ziyang
    Niu, Jie
    Melack, John M.
    Zhang, Jin
    Qiu, Han
    Hu, Bill X.
    Riley, William J.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (10)
  • [38] Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed
    Coaguila, Daniel N.
    Hernandez, Fernando B. T.
    Teixeira, Antonio H. de C.
    Franco, Renato A. M.
    Leivas, Janice F.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2017, 21 (08): : 524 - 529
  • [39] An empirical approach simulating evapotranspiration from groundwater under different soil water conditions
    Tiegang Liu
    Yi Luo
    Environmental Earth Sciences, 2012, 67 : 1345 - 1355
  • [40] Performance evaluation of different empirical models for reference evapotranspiration estimation over Udhagamandalm, The Nilgiris, India
    Raja, P.
    Sona, Fathima
    Surendran, U.
    Srinivas, C. V.
    Kannan, K.
    Madhu, M.
    Mahesh, P.
    Annepu, S. K.
    Ahmed, M.
    Chandrasekar, K.
    Suguna, A. R.
    Kumar, V.
    Jagadesh, M.
    SCIENTIFIC REPORTS, 2024, 14 (01):