Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway

被引:64
|
作者
Liu, Rui-Li [1 ]
Xiong, Qiu-Ju [1 ]
Shu, Qing [1 ]
Wu, Wen-Ning [1 ]
Cheng, Jin [1 ]
Fu, Hui [1 ]
Wang, Fang [1 ,2 ,3 ]
Chen, Jian-Guo [1 ,2 ,3 ]
Hu, Zhuang-Li [1 ,2 ,3 ]
机构
[1] HUST, Dept Pharmacol, Tongji Med Coll, Wuhan 430030, Hubei, Peoples R China
[2] Minist Educ China, Key Lab Neurol Dis, Wuhan 430030, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Nat Drug Chem & Resources Evaluat, Wuhan 430030, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperoside; OGD-R; Cortical neuron; Nitric oxide; BAX-DEPENDENT APOPTOSIS; NMDA RECEPTOR; CELL-DEATH; KINASE-II; ANTIINFLAMMATORY ACTIVITY; PERITONEAL-MACROPHAGES; MOLECULAR-MECHANISMS; HYPERICUM-PERFORATUM; GLUTAMATE RECEPTORS; GENE-EXPRESSION;
D O I
10.1016/j.brainres.2012.06.044
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca2+](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-kappa B activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 173
页数:10
相关论文
共 50 条
  • [31] Preincubation with protein synthesis inhibitors protects cortical neurons against oxygen-glucose deprivation-induced death
    Lobner, D
    Choi, DW
    NEUROSCIENCE, 1996, 72 (02) : 335 - 341
  • [32] Protective effect of icarisideⅡ on oxygen-glucose deprivation and reoxygenation-induced injury in cerebral cortical neurons
    CHEN Na-na
    XU Fan
    FENG Lin-ying
    GAO Jian-mei
    GONG Qi-hai
    中国药理学与毒理学杂志, 2018, 32 (09) : 681 - 682
  • [33] Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury
    Yan-bo Zhang
    Zheng-dong Guo
    Mei-yi Li
    Si-jie Li
    Jing-zhong Niu
    Ming-feng Yang
    Xun-ming Ji
    Guo-wei Lv
    Neural Regeneration Research, 2015, 10 (09) : 1471 - 1476
  • [34] Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury
    Zhang, Yan-bo
    Guo, Zheng-dong
    Li, Mei-yi
    Li, Si-jie
    Niu, Jing-zhong
    Yang, Ming-feng
    Ji, Xun-ming
    Lv, Guo-wei
    NEURAL REGENERATION RESEARCH, 2015, 10 (09) : 1471 - 1476
  • [35] Mulberroside a protects against ischemic impairment in primary culture of rat cortical neurons after oxygen-glucose deprivation followed by reperfusion
    Wang, Cai-Ping
    Zhang, Lu-Zhong
    Li, Gui-Cai
    Shi, Yun-wei
    Li, Jian-Long
    Zhang, Xiao-Chuan
    Wang, Zhi-Wei
    Ding, Fei
    Liang, Xin-Miao
    JOURNAL OF NEUROSCIENCE RESEARCH, 2014, 92 (07) : 944 - 954
  • [36] Neuroprotective effects of Dendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion
    Wang, Q.
    Gong, Q.
    Wu, Q.
    Shi, J.
    PHYTOMEDICINE, 2010, 17 (02) : 108 - 115
  • [37] Xanomeline Protects Cortical Cells From Oxygen-Glucose Deprivation via Inhibiting Oxidative Stress and Apoptosis
    Xin, Rujuan
    Chen, Zhongjian
    Fu, Jin
    Shen, Fuming
    Zhu, Quangang
    Huang, Fang
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [38] Effects of hyperin on brain injury induced by oxygen-glucose deprivation/reperfusion in vitro
    Peng, Guo-Ping
    Wei, Er-Qing
    Ge, Qiu-Fu
    Li, Xiao-Xiao
    Chinese Pharmaceutical Journal, 2005, 40 (06) : 434 - 437
  • [39] Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux
    Zhou, Tianen
    Liang, Lian
    Liang, Yanran
    Yu, Tao
    Zeng, Chaotao
    Jiang, Longyuan
    EXPERIMENTAL CELL RESEARCH, 2017, 358 (02) : 147 - 160
  • [40] Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway
    Qiu, Zhengguo
    Wang, Kefeng
    Jiang, Chao
    Su, Yuqiang
    Fan, Xiaoying
    Li, Jing
    Xue, Sha
    Yao, Li
    CHEMICO-BIOLOGICAL INTERACTIONS, 2020, 317