Twinning superlattices in indium phosphide nanowires

被引:600
|
作者
Algra, Rienk E. [1 ,2 ,3 ]
Verheijen, Marcel A. [1 ]
Borgstrom, Magnus T. [1 ]
Feiner, Lou-Fe [1 ]
Immink, George [1 ]
van Enckevort, Willem J. P. [3 ]
Vlieg, Elias [3 ]
Bakkers, Erik P. A. M.
机构
[1] Philips Res Labs, NL-5656 AE Eindhoven, Netherlands
[2] Mat Innovat Inst M2i, NL-2628 CD Delft, Netherlands
[3] Radboud Univ Nijmegen, IMM, NL-6525 AJ Nijmegen, Netherlands
关键词
D O I
10.1038/nature07570
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semiconducting nanowires offer the possibility of nearly unlimited complex bottom- up design(1,2), which allows for new device concepts(3,4). However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III-V compound semiconductors, are the wire crystal structure and the stacking fault density(5). In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors(6,7), such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics(8) and optics(9) industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two- dimensional nucleation growth of zinc- blende InP and therefore promotes crystallization of the InP nanowires in the zinc- blende, instead of the commonly found wurtzite, crystal structure(10). More importantly, we then demonstrate that we can, once we have enforced the zinc- blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by changing the wire diameter and the zinc concentration, and we present a model based on the distortion of the catalyst droplet in response to the evolution of the cross- sectional shape of the nanowires to quantitatively explain the formation of the periodic twinning.
引用
收藏
页码:369 / 372
页数:4
相关论文
共 50 条
  • [31] Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires
    Su, Xiaojun
    Zeng, Xulu
    Nemec, Hynek
    Zou, Xianshao
    Zhang, Wei
    Borgstrom, Magnus T.
    Yartsev, Arkady
    NANOSCALE, 2019, 11 (40) : 18550 - 18558
  • [32] Kinetic Control of Self-Catalyzed Indium Phosphide Nanowires, Nanocones, and Nanopillars
    Woo, Robyn L.
    Gao, Li
    Goel, Niti
    Hudait, Mantu K.
    Wang, Kang L.
    Kodambaka, Suneel
    Hicks, Robert F.
    NANO LETTERS, 2009, 9 (06) : 2207 - 2211
  • [33] Zinc Blende and Wurtzite Crystal Phase Mixing and Transition in Indium Phosphide Nanowires
    Ikejiri, Keitaro
    Kitauchi, Yusuke
    Tomioka, Katsuhiro
    Motohisa, Junichi
    Fukui, Takashi
    NANO LETTERS, 2011, 11 (10) : 4314 - 4318
  • [34] Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon
    Gao, Li
    Woo, Robyn L.
    Liang, Baolai
    Pozuelo, Marta
    Prikhodko, Sergey
    Jackson, Mike
    Goel, Niti
    Hudait, Mantu K.
    Huffaker, Diana L.
    Goorsky, Mark S.
    Kodambaka, Suneel
    Hicks, Robert F.
    NANO LETTERS, 2009, 9 (06) : 2223 - 2228
  • [35] The role of quantum confinement in p-type doped indium phosphide nanowires
    Alemany, M. M. G.
    Huang, Xiangyang
    Tiago, Murilo L.
    Gallego, L. J.
    Chelikowsky, James R.
    NANO LETTERS, 2007, 7 (07) : 1878 - 1882
  • [36] INDIUM-PHOSPHIDE AND QUATERNARY DOPING SUPERLATTICES GROWN BY LIQUID-PHASE EPITAXY
    GREENE, PD
    PRINS, AD
    DUNSTAN, DJ
    ADAMS, AR
    ELECTRONICS LETTERS, 1987, 23 (07) : 324 - 325
  • [37] TWINNING IN CUBIC SUPERLATTICES
    ARUNACHALAM, VS
    SARGENT, CM
    SCRIPTA METALLURGICA, 1971, 5 (11): : 949 - +
  • [38] WETTING OF INDIUM-PHOSPHIDE BY INDIUM
    NOVIKOVA, EM
    ERSHOVA, SA
    VASILEV, MG
    INORGANIC MATERIALS, 1983, 19 (09) : 1258 - 1260
  • [39] MECHANICAL TWINNING OF INDIUM
    BECKER, JH
    CHALMERS, B
    GARROW, EC
    ACTA CRYSTALLOGRAPHICA, 1952, 5 (06): : 853 - 853
  • [40] TWINNING IN INDIUM ANTIMONIDE
    HAASEN, P
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1957, 209 : 30 - 32