A free Boundary Problem for a Reaction-Diffusion Equation Appearing in Biology

被引:4
|
作者
Takhirov, J. O. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math, Tashkent, Uzbekistan
来源
关键词
Free boundary problem; quasilinear equations; a priori estimates; EPIDEMIC MODEL;
D O I
10.1007/s13226-019-0309-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This works studies a quasilinear, reaction-diffusion type parabolic free boundary problem modelling population dynamics. Holder norm a priori estimates are established for the free boundary and the solution. Uniqueness of the solution is shown and qualitative properties of the solution are investigated.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [41] A mixed boundary value problem for a singularly perturbed reaction-diffusion equation in an L-shaped domain
    Ershova T.Y.
    Moscow University Computational Mathematics and Cybernetics, 2012, 36 (3) : 109 - 119
  • [42] On a Uniqueness of Solution for a Reaction-Diffusion Type System with a Free Boundary
    A. N. Elmurodov
    M. S. Rasulov
    Lobachevskii Journal of Mathematics, 2022, 43 : 2099 - 2106
  • [43] ON THE EXISTENCE OF A FREE-BOUNDARY FOR A CLASS OF REACTION-DIFFUSION SYSTEMS
    DIAZ, JI
    HERNANDEZ, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) : 670 - 685
  • [44] Dynamics of a reaction-diffusion SIRI model with relapse and free boundary
    Ding, Qian
    Liu, Yunfeng
    Chen, Yuming
    Guo, Zhiming
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1659 - 1676
  • [45] THE REACTION-DIFFUSION SYSTEM FOR AN SIR EPIDEMIC MODEL WITH A FREE BOUNDARY
    Huang, Haomin
    Wang, Mingxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 2039 - 2050
  • [46] Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary
    Zhao, Yaling
    Liu, Zuhan
    Zhou, Ling
    ACTA APPLICANDAE MATHEMATICAE, 2019, 159 (01) : 139 - 168
  • [47] MULTIPLE SOLUTIONS IN REACTION-DIFFUSION SYSTEMS WITH A FREE-BOUNDARY
    CONRAD, F
    YEBARI, N
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (01) : 134 - 151
  • [48] Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary
    Yaling Zhao
    Zuhan Liu
    Ling Zhou
    Acta Applicandae Mathematicae, 2019, 159 : 139 - 168
  • [49] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    王立文
    陈庆益
    ActaMathematicaScientia, 1993, (02) : 147 - 152
  • [50] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170