An Image Denoising Model Based on Nonlinear Partial Diferential Equation Using Deep Learning

被引:0
|
作者
Ho, Quan Dac [1 ,2 ]
Huynh, Hieu Trung [3 ]
机构
[1] Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Ind Univ Ho Chi Minh City, Fac Informat Technol, Ho Chi Minh City, Vietnam
关键词
Nonlinear diffusion equation; Neural network; Deep learning; Image denoising; EDGE-DETECTION; DIFFUSION; RESTORATION;
D O I
10.1007/978-981-19-8069-5_27
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a deep neural network-based framework for solving nonlinear partial differential equations (PDEs) and applying in denoising image. A loss function that relies on form PDEs, initial and boundary condition (I/BC) residual was proposed. The proposed loss function is discretization-free and highly parallelizable. The network parameters are determined by using stochastic gradient descent algorithm. We demonstrated the performance of proposed method in solving nonlinear partial diferential equation and applying image denoising. The experimental results from this method were compared to the efficient PDE's numerical method. We showed that the method attains significant improvements in term image denoising.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [41] Deep learning-based PET image denoising and reconstruction: a review
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 24 - 46
  • [42] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [43] Synthetic Aperture Radar Image Denoising Algorithm Based on Deep Learning
    Fu Xiangwei
    Shan Huilin
    Lu Zongkui
    Wang Xingtao
    ACTA OPTICA SINICA, 2023, 43 (06)
  • [44] Deep learning-based PET image denoising and reconstruction: a review
    Fumio Hashimoto
    Yuya Onishi
    Kibo Ote
    Hideaki Tashima
    Andrew J. Reader
    Taiga Yamaya
    Radiological Physics and Technology, 2024, 17 : 24 - 46
  • [45] Research on underwater fish image denoising method based on deep learning
    Xie, Yufeng
    Wu, Shuangle
    Wang, Lang
    Hu, Qiu
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [46] Analysis of Deep Learning Algorithms for Image Denoising
    Choudhary, Nikita
    Sharma, Rakesh
    ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 151 - 160
  • [47] A comprehensive review of image denoising in deep learning
    Jebur, Rusul Sabah
    Zabil, Mohd Hazli Bin Mohamed
    Hammood, Dalal Adulmohsin
    Cheng, Lim Kok
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58181 - 58199
  • [48] Deep Convolutional Dictionary Learning for Image Denoising
    Zheng, Hongyi
    Yong, Hongwei
    Zhang, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 630 - 641
  • [49] Learning deep edge prior for image denoising
    Fang, Yingying
    Zeng, Tieyong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 200
  • [50] Learning Deep Dictionary for Hyperspectral Image Denoising
    Huo, Leigang
    Feng, Xiangchu
    Huo, Chunlei
    Pan, Chunhong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (07): : 1401 - 1404