Surface melt dominates Alaska glacier mass balance

被引:120
|
作者
Larsen, C. F. [1 ]
Burgess, E. [1 ,2 ]
Arendt, A. A. [3 ]
O'Neel, S. [2 ]
Johnson, A. J. [1 ]
Kienholz, C. [1 ]
机构
[1] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[2] US Geol Survey, Alaska Sci Ctr, Anchorage, AK USA
[3] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA
关键词
Alaska glaciers; tidewater glaciers; mass balance; Operation IceBridge; SEA-LEVEL RISE; NORTH-AMERICA; ICE CAPS; CLIMATE; INVENTORY; COLUMBIA; GULF; USA;
D O I
10.1002/2015GL064349
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of -75 +/- 11 Gt yr(-1) (1994-2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.
引用
收藏
页码:5902 / 5908
页数:7
相关论文
共 50 条
  • [31] Reconciling Svalbard Glacier Mass Balance
    Schuler, Thomas, V
    Kohler, Jack
    Elagina, Nelly
    Hagen, Jon Ove M.
    Hodson, Andrew J.
    Jania, Jacek A.
    Kaab, Andreas M.
    Luks, Bartlomiej
    Malecki, Jakub
    Moholdt, Geir
    Pohjola, Veijo A.
    Sobota, Ireneusz
    Van Pelt, Ward J. J.
    FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [32] Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile
    Ayala, A.
    Pellicciotti, F.
    Peleg, N.
    Burlando, P.
    JOURNAL OF GLACIOLOGY, 2017, 63 (241) : 803 - 822
  • [33] STUDIES OF GLACIER BEHAVIOR AND GLACIER MASS BALANCE IN GREENLAND - A REVIEW
    WEIDICK, A
    GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 1984, 66 (03) : 183 - 195
  • [34] Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia
    Zhang, Yong
    Wang, Xin
    Jiang, Zongli
    Wei, Junfeng
    Enomoto, Hiroyuki
    Ohata, Tetsuo
    WATER, 2019, 11 (09)
  • [35] Summer melt regulates winter glacier flow speeds throughout Alaska
    Burgess, Evan W.
    Larsen, Christopher F.
    Forster, Richard R.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (23) : 6160 - 6164
  • [36] Melt water input from the Bering Glacier watershed into the Gulf of Alaska
    Josberger, Edward G.
    Shuchman, Robert A.
    Jenkins, Liza K.
    Endsley, K. Arthur
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (03) : 886 - 890
  • [37] GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica
    Shean, David E.
    Christianson, Knut
    Larson, Kristine M.
    Ligtenberg, Stefan R. M.
    Joughin, Ian R.
    Smith, Ben E.
    Stevens, C. Max
    Bushuk, Mitchell
    Holland, David M.
    CRYOSPHERE, 2017, 11 (06): : 2655 - 2674
  • [38] Mass Balance Evolution of Black Rapids Glacier, Alaska, 1980-2100, and Its Implications for Surge Recurrence
    Kienholz, Christian
    Hock, Regine
    Truffer, Martin
    Bieniek, Peter
    Lader, Richard
    FRONTIERS IN EARTH SCIENCE, 2017, 5
  • [39] HEAT BALANCE AT THE SURFACE OF FEDCHENKO GLACIER
    KAZANSKII, AB
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (04): : 806 - 809
  • [40] Glacier slip and seismicity induced by surface melt
    Moore, Peter L.
    Winberry, J. Paul
    Iverson, Neal R.
    Christianson, Knut A.
    Anandakrishnan, Sridhar
    Jackson, Miriam
    Mathison, Mark E.
    Cohen, Denis
    GEOLOGY, 2013, 41 (12) : 1247 - 1250