Pitch Attitude Hold Autopilot for YTU EC-001 Fixed-Wing Unmanned Aerial Vehicle

被引:0
|
作者
Win, Thanda [1 ]
Nyunt, Hteik Tin Cho [1 ]
Tun, Hla Myo [1 ]
机构
[1] Yangon Technol Univ, Dept Elect Engn, Yangon, Myanmar
关键词
pitch attitude; fixed-wing; unmanned aerial vehicle; autopilot; longitudinal stability derivative;
D O I
10.1109/ica-symp.2019.8646286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Small aircrafts, Unmanned Aerial Vehicles (UAVs), are playing progressively important roles in military and civilian application around the world. This paper focus on pitch attitude hold autopilot design for YTU-EC 001 UAV. The YTU-EC-001 is Fixed-Wing Unmanned Aerial Vehicle in research of Yangon Technological University. In this paper, mathematical modeling, equation of motion on YTU-EC 001 Fixed-Wing Unmanned Aerial Vehicle and the pitch angle and pitch rate transfer functions are derived. These transfer functions showed that the system is stable by using MATLAB. Then controller for pitch altitude system is designed, based on the state space of linear model of the aircraft. A Proportional Integral-Derivative (PID) controller structure is chosen to achieve the system design requirements. The settling time is less than 2 seconds and overshoot should not exceed 3%.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 50 条
  • [21] Flocking and obstacles avoidance for fixed-wing unmanned aerial vehicle swarm
    Wu Y.
    Ye S.
    Fang Y.
    Zhu S.
    Zhang D.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2019, 41 (05): : 103 - 110
  • [22] Unmanned Aerial Vehicle Path Following A SURVEY AND ANALYSIS OF ALGORITHMS FOR FIXED-WING UNMANNED AERIAL VEHICLES
    Sujit, P. B.
    Saripalli, Srikanth
    Sousa, Joao Borges
    IEEE CONTROL SYSTEMS MAGAZINE, 2014, 34 (01): : 42 - 59
  • [23] Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles
    Poksawat, Pakorn
    Wang, Liuping
    Mohamed, Abdulghani
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (17): : 2233 - 2242
  • [24] Nonlinear Model Predictive Attitude Control for Fixed-Wing Unmanned Aerial Vehicle based on a Wind Frame Formulation
    Reinhardt, Dirk
    Johansen, Tor Arne
    2019 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS' 19), 2019, : 503 - 512
  • [25] A non-linear observer for attitude estimation of a fixed-wing unmanned aerial vehicle without GPS measurements
    Mahony, R.
    Euston, M.
    Kim, Jonghyuk
    Coote, P.
    Hamel, T.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (06) : 699 - 717
  • [26] Design and Control of a Hand-Launched Fixed-Wing Unmanned Aerial Vehicle
    Lu, Xinjiang
    Li, Zenghui
    Xu, Jie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3006 - 3016
  • [27] Quaternion-based Backstepping control of a Fixed-wing Unmanned Aerial Vehicle
    Oland, Espen
    Kristiansen, Raymond
    2013 IEEE AEROSPACE CONFERENCE, 2013,
  • [28] Modeling and Simulation of The UX-6 Fixed-Wing Unmanned Aerial Vehicle
    Tri Kuntoro Priyambodo
    Abdul Majid
    Journal of Control, Automation and Electrical Systems, 2021, 32 : 1344 - 1355
  • [29] Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques
    Ismailov, Kuat K.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2022, (78): : 112 - 124
  • [30] Mission Design and Validation of a Fixed-Wing Unmanned Aerial Vehicle for Environmental Monitoring
    Rufino, Giancarlo
    Conte, Claudia
    Basso, Pasquale
    Tirri, Anna Elena
    Donato, Vincenzo
    DRONES, 2024, 8 (11)