Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

被引:48
|
作者
Wang, JinRong [2 ]
Feckan, Michal [1 ,3 ]
Zhou, Yong [4 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[4] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equations; Asymptotically periodic solution; Existence; INTEGRODIFFERENTIAL EQUATIONS; GLOBAL EXISTENCE; BANACH-SPACES; BEHAVIOR;
D O I
10.1016/j.cnsns.2012.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Frechet space. Some examples are given to illustrate the results. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [21] ASYMPTOTICALLY PERIODIC SOLUTIONS FOR CAPUTO TYPE FRACTIONAL EVOLUTION EQUATIONS
    Ren, Lulu
    Wang, JinRong
    Feckan, Michal
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1294 - 1312
  • [22] Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations
    Hernández, E
    Pelicer, ML
    APPLIED MATHEMATICS LETTERS, 2005, 18 (11) : 1265 - 1272
  • [23] S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations
    Cuevas, Claudio
    de Souza, Julio Cesar
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 865 - 870
  • [24] On S-asymptotically ω-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces
    Oueama-Guengai, Enock R.
    N'Guerekata, Gaston M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9116 - 9122
  • [25] Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equationsn
    Mu, Jia
    Zhou, Yong
    Peng, Li
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [26] Asymptotic equivalence of differential equations and asymptotically almost periodic solutions
    Akhmet, M. U.
    Tleubergenova, M. A.
    Zafer, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) : 1870 - 1877
  • [27] Asymptotically almost periodic solutions of stochastic functional differential equations
    Cao, Junfei
    Yang, Qigui
    Huang, Zaitang
    Liu, Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1499 - 1511
  • [28] Extremal solutions for some periodic fractional differential equations
    Zhang, Wei
    Bai, Zhanbing
    Sun, Sujing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [29] PERIODIC AND HYPERBOLIC SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Bekir, Ahmet
    Guner, Ozkan
    Aksoy, Esin
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2016, 15 (01) : 88 - 95
  • [30] Extremal solutions for some periodic fractional differential equations
    Wei Zhang
    Zhanbing Bai
    Sujing Sun
    Advances in Difference Equations, 2016