Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

被引:48
|
作者
Wang, JinRong [2 ]
Feckan, Michal [1 ,3 ]
Zhou, Yong [4 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[4] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equations; Asymptotically periodic solution; Existence; INTEGRODIFFERENTIAL EQUATIONS; GLOBAL EXISTENCE; BANACH-SPACES; BEHAVIOR;
D O I
10.1016/j.cnsns.2012.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Frechet space. Some examples are given to illustrate the results. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条