Visual object tracking using sparse context-aware spatio-temporal correlation filter

被引:6
|
作者
Elayaperumal, Dinesh [1 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Context; ADMM; Spatio-temporal; l(1) regularization; Visual tracking; Correlation filter;
D O I
10.1016/j.jvcir.2020.102820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel sparse context-aware spatio-temporal correlation filter tracker (SCAST) method for robust visual object tracking. Different from the existing trackers, this paper introduce an l(1) multi-scale regularization parameter-based correlation filter that reduces the boundary effect due to partial occlusions, illumination and scale variations. At each iteration, the l(1) regularization parameter is updated through spatial knowledge of each correlation filter coefficient. Besides, the contextual information acquired from the target region can lead to determining the accurate localization of the target. Moreover, contextual information has combined with spatio-temporal factor to achieve the better performance. Further, an objective function is designed with system constraints to ensure the applicability of the model and the optimal solution is derived by utilizing the alternating direction method of multiplier, which leads to low computational cost. Finally, the feasibility and superiority of proposed tracker algorithm is evaluated through three benchmark dataset: OTB-2013, OTB-2015, and TempleColor-128. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Algorithm for tracking adaptive context-aware correlation filter targets
    Sun Y.
    Xiao S.
    Qu J.
    Dong W.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (03): : 21 - 27
  • [32] A Context-aware Framework for ML Models on Spatio-temporal Data Streams
    Elmamooz, Golnaz
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 261 - 263
  • [33] Tracking Algorithm of Improved Spatio-Temporal Context with Particle Filter
    Wen, Wu
    Wu, Lizhi
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1549 - 1553
  • [34] Unified spatio-temporal attention mixformer for visual object tracking
    Park, Minho
    Yoon, Gang-Joon
    Song, Jinjoo
    Yoon, Sang Min
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [35] Memory Prompt for Spatio-Temporal Transformer Visual Object Tracking
    Xu T.
    Wu X.
    Zhu X.
    Kittler J.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (08): : 1 - 6
  • [36] Hierarchical Spatiotemporal Context-Aware Correlation Filters for Visual Tracking
    Wang, Wuwei
    Zhang, Ke
    Lv, Meibo
    Wang, Jingyu
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (12) : 6066 - 6079
  • [37] Visual tracking via context-aware local sparse appearance model
    Li, Guiji
    Peng, Manman
    Nai, Ke
    Li, Zhiyong
    Li, Keqin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 92 - 105
  • [38] Scale-Adaptive Context-Aware Correlation Filter with Output Constraints for Visual Target Tracking
    Xu, Jingxiang
    Wu, Xuedong
    Zhu, Zhiyu
    Yang, Kaiyun
    Chang, Yanchao
    Du, Zhaoping
    Wan, Zhengang
    Gu, Lili
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [39] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729
  • [40] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)