Investigation of transport of genistein, daidzein and their inclusion complexes prepared with different cyclodextrins on Caco-2 cell line

被引:22
|
作者
Daruhazi, Agnes Emma [1 ]
Kiss, Timea [2 ]
Vecsernyes, Miklos [2 ]
Szente, Lajos [3 ]
Szoke, Eva [1 ]
Lemberkovics, Eva [1 ]
机构
[1] Semmelweis Univ, Dept Pharmacognosy, H-1085 Budapest, Hungary
[2] Univ Debrecen, Dept Pharmaceut Technol, Med & Hlth Sci Ctr, H-4032 Debrecen, Hungary
[3] CycloLab Ltd, H-1097 Budapest, Hungary
关键词
Genistein; Daidzein; Dissolution profile; Caco-2; Cyclodextrin; PHYTOESTROGENS; ISOFLAVONOIDS;
D O I
10.1016/j.jpba.2013.05.012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Isoflavonoids are widespread constituents in medical plants especially in legumes (Fabaceae), but occur in other different plant families as well (Rosaceae, Iridaceae, Amaranthaceae). Their antioxidant, estrogen-like, anti-inflammatory and analgesic effects make them promising compounds in therapy of important disorders especially in estrogen related diseases. Poor solubility in aqueous system of genistein and daidzein needs a solubility enhancement for pharmaceutical use. These compounds are suitable guest molecules for inclusion complex formation with cyclodextrins (CDs) considering matching their size and polarity. The molecular encapsulation with beta-cyclodextrin (beta-CD), gamma-cyclodextrin (gamma-CD), hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and random methyl-beta cyclodextrin (RAMEB-CD) results in a solid, molecularly dispersed form and in a significantly improved aqueous solubility of genistein and daidzein. Determining enhancement in solubility and bioavailability we investigated the transport of these inclusion complexes across Caco-2 cell line comparing that of the pure compounds and found significant improving effect of the different CD derivatives on membrane permeation of the two isoflavone aglycons. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [31] Transport of curcumin derivatives in Caco-2 cell monolayers
    Zeng, Zhen
    Shen, Zhe L.
    Zhai, Shuo
    Xu, Jia L.
    Liang, Hui
    Shen, Qin
    Li, Qing Y.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2017, 117 : 123 - 131
  • [32] The absorption and transport of magnolol in Caco-2 cell model
    An-guo Wu
    Bao Zeng
    Meng-qiu Huang
    Sheng-mei Li
    Jian-nan Chen
    Xiao-ping Lai
    Chinese Journal of Integrative Medicine, 2013, 19 : 206 - 211
  • [33] Transepithelial taurine transport in Caco-2 cell monolayers
    Roig-Pérez, S
    Moretó, M
    Ferrer, R
    JOURNAL OF MEMBRANE BIOLOGY, 2005, 204 (02): : 85 - 92
  • [34] The absorption and transport of magnolol in Caco-2 cell model
    Wu An-guo
    Zeng Bao
    Huang Meng-qiu
    Li Sheng-mei
    Chen Jian-nan
    Lai Xiao-ping
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2013, 19 (03) : 206 - 211
  • [35] The Absorption and Transport of Magnolol in Caco-2 Cell Model
    吴安国
    曾宝
    黄孟秋
    李生梅
    陈建南
    赖小平
    Chinese Journal of Integrative Medicine , 2013, (03) : 206 - 211
  • [36] The Absorption and Transport of Magnolol in Caco-2 Cell Model
    吴安国
    曾宝
    黄孟秋
    李生梅
    陈建南
    赖小平
    Chinese Journal of Integrative Medicine, 2013, 19 (03) : 206 - 211
  • [37] Transepithelial Taurine Transport in Caco-2 Cell Monolayers
    S. Roig-Pérez
    M. Moretó
    R. Ferrer
    The Journal of Membrane Biology, 2005, 204 : 85 - 92
  • [38] Transport characteristics of fexofenadine in the Caco-2 cell model
    Petri, N
    Tannergren, C
    Rungstad, D
    Lennernäs, H
    PHARMACEUTICAL RESEARCH, 2004, 21 (08) : 1398 - 1404
  • [39] Transport and metabolism of (±)-praeruptorin A in Caco-2 cell monolayers
    Jing, W. H.
    Song, Y. L.
    Yan, R.
    Bi, H. C.
    Li, P. T.
    Wang, Y. T.
    XENOBIOTICA, 2011, 41 (01) : 71 - 81
  • [40] Glutamate transport during Caco-2 cell differentiation
    Mordrelle, A
    Huneau, JF
    Jullian, E
    Cormet, E
    Benamouzig, R
    Tome, D
    FASEB JOURNAL, 1997, 11 (03): : 1749 - 1749