Variational problems on the Sphere

被引:11
|
作者
Bisci, Giovanni Molica [1 ]
机构
[1] Univ Reggio Calabria, Dipartimento MECMAT, Via Graziella, I-89124 Reggio Di Calabria, Italy
关键词
Riemannian manifold; Emden-Fowler equation; Infinitely many weak solutions; SINGULAR ELLIPTIC INEQUALITIES; RIEMANNIAN-MANIFOLDS; EQUATIONS; MULTIPLICITY;
D O I
10.1090/conm/595/11774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By various variational approaches, existence of infinitely many weak solutions for the following eigenvalue problem (S lambda) -Delta(h)w + alpha(sigma)w = lambda K (sigma) f (w), sigma is an element of S-d, w is an element of H-alpha(2) (S-d) on the unit sphere Sd are established for certain eigenvalues lambda > 0, depending on oscillating properties of f either at infinity or at zero. Here a, K are sufficiently smooth and positive maps on S-d. These multiplicity results can be applied to solve Emden-Fowler equations in the Euclidean case.
引用
收藏
页码:273 / +
页数:4
相关论文
共 50 条
  • [21] Coisotropic variational problems
    Musso, E
    Grant, JDE
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 303 - 338
  • [22] DISCRETIZATION OF VARIATIONAL PROBLEMS
    MERTEN, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04): : 253 - 254
  • [23] DEGENERATE VARIATIONAL PROBLEMS
    DEDECKER, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (12): : 547 - 550
  • [24] CRYSTALLINE VARIATIONAL PROBLEMS
    TAYLOR, JE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (04) : 568 - 588
  • [25] KOHN VARIATIONAL PRINCIPLE FOR A SPHERE OF ARBITRARY RADIUS
    WEATHERFORD, CA
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, : 277 - 284
  • [26] Variational sphere set approximation for solid objects
    Rui Wang
    Kun Zhou
    John Snyder
    Xinguo Liu
    Hujun Bao
    Qunsheng Peng
    Baining Guo
    The Visual Computer, 2006, 22 : 612 - 621
  • [27] A Riesz Variational Characterization of Sobolev Spaces on the Sphere
    Geng, Jiaxin
    Ling, Yun
    Li, Jiansong
    Wang, Heping
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [28] ON THE SINGULAR VARIATIONAL PROBLEMS
    谭经刚
    杨健夫
    ActaMathematicaScientia, 2004, (04) : 672 - 690
  • [29] Discontinuous variational problems
    Voznesenskij, V.V.
    Kashinov, V.V.
    Ogandzhanyants, S.I.
    Avtometriya, 1996, (03): : 117 - 120
  • [30] On the singular variational problems
    Tan, JG
    Yang, JF
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 672 - 690