Procrustes Problems for General, Triangular, and Symmetric Toeplitz Matrices

被引:0
|
作者
Yang, Juan [1 ]
Deng, Yuan-bei [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
D O I
10.1155/2013/696019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Toeplitz Procrustes problems are the least squares problems for the matrix equation AX = B over some Toeplitz matrix sets. In this paper the necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions of the Toeplitz Procrustes problems when the unknown matrices are constrained to the general, the triangular, and the symmetric Toeplitz matrices, respectively. The algorithms are designed and the numerical examples show that these algorithms are feasible.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    Batalshchikov, A.
    Grudsky, S.
    Ramirez de Arellano, E.
    Stukopin, V.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 301 - 330
  • [42] DETERMINANT OF A CLASS OF SKEW-SYMMETRIC TOEPLITZ MATRICES
    ANDRES, TH
    HOSKINS, WD
    STANTON, RG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (02) : 179 - 186
  • [43] On Pairs of Symmetric Toeplitz Matrices Whose Squares Are Identical
    V. N. Chugunov
    Computational Mathematics and Mathematical Physics, 2022, 62 : 733 - 743
  • [46] On LCD codes from skew symmetric Toeplitz matrices
    Cheng, Kaimin
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [47] Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions
    Cotirla, Luminita-Ioana
    Wanas, Abbas Kareem
    SYMMETRY-BASEL, 2022, 14 (07):
  • [48] Symmetric Toeplitz-Structured Compressed Sensing Matrices
    Huang T.
    Fan Y.-Z.
    Zhu M.
    Sensing and Imaging, 2015, 16 (1): : 1 - 9
  • [49] Regularizing Inverse Preconditioners for Symmetric Band Toeplitz Matrices
    P. Favati
    G. Lotti
    O. Menchi
    EURASIP Journal on Advances in Signal Processing, 2007
  • [50] Bounds for the Norms of Symmetric Toeplitz Matrices in Information Theory
    Jiang, Zhaolin
    Jiang, Ziwu
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 508 - 517