Analysis of a new stabilized finite volume element method based on multiscale enrichment for the Navier-Stokes problem

被引:6
|
作者
Wen, Juan [1 ]
He, Yinnian [2 ]
Zhao, Xin [3 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Math, Xian, Peoples R China
[3] Baoji Univ Arts & Sci, Dept Math & Geog Sci & Environm Engn, Xian, Peoples R China
关键词
P-1/P-1; elements; Finite volume element method; Multiscale enrichment; The Navier-Stokes equations;
D O I
10.1108/HFF-06-2015-0244
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose - The purpose of this paper is to propose a new stabilized finite volume element method for the Navier-Stokes problem. Design/methodology/approach - This new method is based on the multiscale enrichment and uses the lowest equal order finite element pairs P-1/P-1. Findings - The stability and convergence of the optimal order in H-1-norm for velocity and L-2-norm for pressure are obtained. Originality/value - Using a dual problem for the Navier-Stokes problem, the convergence of the optimal order in L-2-norm for the velocity is obtained. Finally, numerical example confirms the theory analysis and validates the effectiveness of this new method.
引用
收藏
页码:2462 / 2485
页数:24
相关论文
共 50 条
  • [21] RECOVERY-BASED ERROR ESTIMATOR FOR STABILIZED FINITE ELEMENT METHOD FOR THE STATIONARY NAVIER-STOKES PROBLEM
    Song, Lina
    Su, Haiyan
    Feng, Xinlong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3758 - A3772
  • [22] A new stabilized finite element method for shape optimization in the steady Navier-Stokes flow
    Gao, Zhiming
    Ma, Yichen
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (08) : 816 - 832
  • [23] Characteristic stabilized finite element method for the transient Navier-Stokes equations
    Jia, Hongen
    Li, Kaitai
    Liu, Songhua
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (45-48) : 2996 - 3004
  • [24] Stabilized finite-element method for the stationary Navier-Stokes equations
    Yinnian He
    Aiwen Wang
    Liquan Mei
    [J]. Journal of Engineering Mathematics, 2005, 51 : 367 - 380
  • [25] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [26] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380
  • [27] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [28] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [29] A stabilized finite element method for stochastic incompressible Navier-Stokes equations
    El-Amrani, Mofdi
    Seaid, Mohammed
    Zahri, Mostafa
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2576 - 2602
  • [30] A decoupled stabilized finite element method for the time-dependent Navier-Stokes/Biot problem
    Guo, Liming
    Chen, Wenbin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10749 - 10774