Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

被引:86
|
作者
Cheng, Han [1 ]
Lear-Rooney, Calli M. [2 ]
Johansen, Lisa [3 ]
Varhegyi, Elizabeth [1 ]
Chen, Zheng W. [1 ]
Olinger, Gene G. [2 ]
Rong, Lijun [1 ]
机构
[1] Univ Illinois, Coll Med, Dept Microbiol & Immunol, Chicago, IL 60612 USA
[2] US Army, Med Res Inst Infect Dis, Ft Detrick, MD 21702 USA
[3] Horizon Discovery Inc, Cambridge, MA USA
基金
美国国家卫生研究院;
关键词
CELL ENTRY; GLYCOSAMINOGLYCANS; TARGETS; DISEASE;
D O I
10.1128/JVI.01337-15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy.
引用
收藏
页码:9932 / 9938
页数:7
相关论文
共 50 条
  • [21] Molecular Basis for Small Molecule Inhibition of G Protein-Coupled Receptor Kinases
    Homan, Kristoff T.
    Tesmer, John J. G.
    ACS CHEMICAL BIOLOGY, 2015, 10 (01) : 246 - 256
  • [22] Endocytosis of G protein-coupled receptors:: roles of G protein-coupled receptor kinases and β-arrestin proteins
    Claing, A
    Laporte, SA
    Caron, MG
    Lefkowitz, RJ
    PROGRESS IN NEUROBIOLOGY, 2002, 66 (02) : 61 - 79
  • [23] G Protein-Coupled Receptor Resensitization Paradigms
    Gupta, Manveen K.
    Mohan, Maradumane L.
    Prasad, Sathyamangla V. Naga
    G PROTEIN-COUPLED RECEPTORS: EMERGING PARADIGMS IN ACTIVATION, SIGNALING AND REGULATION, PT B, 2018, 339 : 63 - 91
  • [24] Imaging G protein-coupled receptor islands
    Park, PSH
    Palczewski, K
    NATURE CHEMICAL BIOLOGY, 2005, 1 (04) : 184 - 185
  • [25] On the G Protein-Coupled Receptor Neuromodulation of the Claustrum
    Dasiel O. Borroto-Escuela
    Kjell Fuxe
    Neurochemical Research, 2020, 45 : 5 - 15
  • [26] Characterization of G protein-coupled receptor kinases
    Pronin, AN
    Loudon, RP
    Benovic, JL
    G PROTEIN PATHWAYS, PT A, RECEPTORS, 2002, 343 : 547 - 559
  • [27] G protein-coupled receptor (GPCR) pharmacogenomics
    Thompson, Miles D.
    Reiner-Link, David
    Berghella, Alessandro
    Rana, Brinda K.
    Rovati, G. Enrico
    Capra, Valerie
    Gorvin, Caroline M.
    Hauser, Alexander S.
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2024, 61 (08) : 641 - 684
  • [28] Photoactivation of G protein-coupled receptor rhodopsin
    Yan, Elsa C. Y.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2007, 24 (06): : 730 - 730
  • [29] Rhodopsin: A prototypical G protein-coupled receptor
    Sakmar, TP
    PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 59, 1998, 59 : 1 - 34
  • [30] G protein-coupled receptor (GPCR) microarrays
    Fang, Y
    Frutos, AG
    Lahiri, J
    BIOMEDICAL NANOTECHNOLOGY ARCHITECTURES AND APPLICATIONS, 2002, 4626 : 98 - 102