VARIATIONAL CALCULUS WITH FRACTIONAL AND CLASSICAL DERIVATIVES

被引:0
|
作者
Herzallah, Mohamed A. E. [1 ,2 ]
机构
[1] Zagazig Univ, Fac Sci, Zagazig, Egypt
[2] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia
来源
ROMANIAN JOURNAL OF PHYSICS | 2012年 / 57卷 / 9-10期
关键词
Fractional integral; fractional derivative; fractional calculus of variations; EULER-LAGRANGE EQUATIONS; HAMILTON FORMALISM; FORMULATION; TERMS; SYSTEMS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents necessary and sufficient optimality conditions of Euler-Lagrange type for fractional variational problems with functionals containing classical derivatives and right or left fractional derivatives in both Riemann-Liouville and Caputo senses. We use, as variational functionals, right and left fractional integrals instead of the classical integral.
引用
收藏
页码:1261 / 1269
页数:9
相关论文
共 50 条
  • [31] QUASI-CLASSICAL SOLUTIONS OF INVERSE PROBLEM OF VARIATIONAL CALCULUS
    FILIPPOV, VM
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (01): : 53 - 56
  • [32] Fractional-Order Variational Calculus with Generalized Boundary Conditions
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [33] Fractional-Order Variational Calculus with Generalized Boundary Conditions
    MohamedAE Herzallah
    Dumitru Baleanu
    Advances in Difference Equations, 2011
  • [34] Multiobjective fractional variational calculus in terms of a combined Caputo derivative
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5099 - 5111
  • [35] A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus
    Agrawal, Om P.
    Hasan, Md. Mehedi
    Tangpong, X. W.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2011, VOL 1, PTS A AND B: 23RD BIENNIAL CONFERENCE ON MECHANICAL VIBRATION AND NOISE, 2012, : 165 - 171
  • [36] A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus
    Agrawal, Om P.
    Hasan, M. Mehedi
    Tangpong, X. W.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02):
  • [37] Fractional Herglotz variational problems with Atangana–Baleanu fractional derivatives
    Jianke Zhang
    Luyang Yin
    Chang Zhou
    Journal of Inequalities and Applications, 2018
  • [38] Quantization of classical fields with fractional derivatives
    Muslih, SI
    Baleanu, D
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (05): : 507 - 512
  • [39] On variational properties of balanced central fractional derivatives
    Xu, Yufeng
    Sun, Hai-Wei
    Sheng, Qin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1195 - 1209
  • [40] Expansion formula for fractional derivatives in variational problems
    Atanackovic, Teodor M.
    Janev, Marko
    Konjik, Sanja
    Pilipovic, Stevan
    Zorica, Dusan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 911 - 924