Mesoscopic Maxwell-dissipative Finite Element model for crack propagation

被引:4
|
作者
Heino, P
Kaski, K
机构
[1] Lab. of Computational Engineering, Helsinki University of Technology, FIN-02150 Espoo
来源
关键词
dynamic crack propagation; viscoelasticity; branch bending;
D O I
10.1142/S0129183197000321
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic fracture in viscoelastic solids has been studied computationally using a mesoscale Finite Element model. In order to study crack propagation in homogeneous or amorphous materials the locations of nodes are selected regularly or randomly, respectively. In both cases results show oscillations in crack velocity above a critical velocity of about one-half the Raleigh velocity. The complicated topology of cracks obeys the scaling law found in experimental works. Dissipative systems are found to bear a larger maximum strain than purely elastic systems before macroscopic fracture.
引用
收藏
页码:383 / 395
页数:13
相关论文
共 50 条
  • [31] BLUNT CRACK BAND PROPAGATION IN FINITE-ELEMENT ANALYSIS
    BAZANT, ZP
    CEDOLIN, L
    JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1979, 105 (02): : 297 - 315
  • [32] Modeling crack propagation in wood by extended finite element method
    Qiu, L. P.
    Zhu, E. C.
    van de Kuilen, J. W. G.
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2014, 72 (02) : 273 - 283
  • [33] Extended finite element method for fretting fatigue crack propagation
    Giner, E.
    Sukumar, N.
    Denia, F. D.
    Fuenmayor, F. J.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (22-23) : 5675 - 5687
  • [34] Finite element crack propagation calculation using trial cracks
    Baeker, Martin
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 43 (01) : 179 - 183
  • [35] CRACK-PROPAGATION IN SEA ICE - FINITE ELEMENT APPROACH
    MUKHERJI, B
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (11): : 1009 - &
  • [36] FINITE-ELEMENT MODELING OF CRACK BAND PROPAGATION - CLOSURE
    BAZANT, ZP
    CEDOLIN, L
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1984, 110 (03): : 660 - 660
  • [37] Finite element simulation of ductile crack propagation in metal materials
    Guo, Sujuan
    Kang, Guozheng
    Zhang, Juan
    Guo, Yan
    TRANSFERABILITY AND APPLICABILITY OF CURRENT MECHANICS APPROACHES, 2009, : 31 - 35
  • [38] Crack propagation simulation based on extended finite element methods
    Chen, SY
    STRUCTURAL INTEGRITY AND MATERIALS AGING: FRACTURE MECHANICS AND APPLICATIONS, 2003, : 105 - 111
  • [39] Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials
    Li, SH
    Ghosh, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (07) : 1028 - 1067
  • [40] A model of cleavage crack propagation in a BCC polycrystalline solid based on the extended finite element method
    Shibanuma, Kazuki
    Suzuki, Yuta
    Kiriyama, Kazuya
    Suzuki, Katsuyuki
    Shirahata, Hiroyuki
    ACTA MATERIALIA, 2019, 176 : 232 - 241