Linear estimation in Krein spaces .1. Theory

被引:150
|
作者
Hassibi, B [1 ]
Sayed, AH [1 ]
Kailath, T [1 ]
机构
[1] UNIV CALIF SANTA BARBARA, DEPT ELECT & COMP ENGN, SANTA BARBARA, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/9.481605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors develop a self-contained theory for linear estimation in Krein spaces, The derivation is based on simple concepts such as projections and matrix factorizations and leads to an interesting connection between Krein space projection and the recursive computation of the stationary points of certain second-order (or quadratic) forms, The authors use the innovations process to obtain a general recursive linear estimation algorithm, When specialized to a state-space structure, the algorithm yields a Krein space generalization of the celebrated Kalman filter with applications in several areas such as H-infinity-filtering and control, game problems, risk sensitive control, and adaptive filtering.
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [41] Schur complements in krein spaces
    Maestripieri, Alejandra
    Peria, Francisco Martinez
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (02) : 207 - 221
  • [42] Operator convexity in Krein spaces
    Moslehian, Mohammad Sal
    Dehghani, Mahdi
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 133 - 144
  • [43] Normal Projections in Krein Spaces
    Maestripieri, Alejandra
    Martinez Peria, Francisco
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (03) : 357 - 380
  • [44] Duality for frames in Krein spaces
    Ignacio Giribet, Juan
    Maestripieri, Alejandra
    Martinez Peria, Francisco
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 879 - 896
  • [45] ORTHOGONAL SUMS IN KREIN SPACES
    Rovnyak, James
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 1999 - 2010
  • [46] Schur Complements in Krein Spaces
    Alejandra Maestripieri
    Francisco Martínez Pería
    Integral Equations and Operator Theory, 2007, 59 : 207 - 221
  • [47] Abstract splines in Krein spaces
    Giribet, J. I.
    Maestripieri, A.
    Martinez Peria, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 423 - 436
  • [48] ON HYPONORMAL OPERATORS IN KREIN SPACES
    Esmeral, Kevin
    Ferrer, Osmin
    Jalk, Jorge
    Lora Castro, Boris
    ARCHIVUM MATHEMATICUM, 2019, 55 (04): : 249 - 259
  • [49] Normal Projections in Krein Spaces
    Alejandra Maestripieri
    Francisco Martínez Pería
    Integral Equations and Operator Theory, 2013, 76 : 357 - 380
  • [50] EFFECTIVE TOPOLOGICAL-SPACES .1. A DEFINABILITY THEORY
    KALANTARI, I
    WEITKAMP, G
    ANNALS OF PURE AND APPLIED LOGIC, 1985, 29 (01) : 1 - 27