KmL3D: A non-parametric algorithm for clustering joint trajectories

被引:66
|
作者
Genolini, C. [1 ,2 ]
Pingault, J. B. [3 ,4 ]
Driss, T. [2 ]
Cote, S. [3 ,4 ,5 ,6 ]
Tremblay, R. E. [3 ,4 ,5 ,6 ,9 ]
Vitaro, F. [3 ,4 ,5 ]
Arnaud, C. [1 ]
Falissard, B. [6 ,7 ,8 ]
机构
[1] Univ Toulouse 3, INSERM, U1027, F-31062 Toulouse, France
[2] Univ Paris Ouest Nanterre La Def, UFR STAPS, CeRSM EA 2931, Paris, France
[3] Univ Montreal, Res Unit Childrens Psychosocial Maladjustment, Montreal, PQ, Canada
[4] St Justine Hosp, Montreal, PQ, Canada
[5] Univ Montreal, Int Lab Child & Adolescent Mental Hlth Dev, Montreal, PQ, Canada
[6] INSERM, U669, Paris, France
[7] Univ Paris Sud, Paris, France
[8] Univ Paris 05, Paris, France
[9] Natl Univ Ireland Univ Coll Dublin, Sch Publ Hlth Physiotherapy & Populat Sci, Dublin 4, Ireland
关键词
Longitudinal data; k-means; Cluster analysis; Non-parametric algorithm; Joint trajectories; HYPERACTIVITY; DISORDER;
D O I
10.1016/j.cmpb.2012.08.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In cohort studies, variables are measured repeatedly and can be considered as trajectories. A classic way to work with trajectories is to cluster them in order to detect the existence of homogeneous patterns of evolution. Since cohort studies usually measure a large number of variables, it might be interesting to study the joint evolution of several variables (also called joint-variable trajectories). To date, the only way to cluster joint-trajectories is to cluster each trajectory independently, then to cross the partitions obtained. This approach is unsatisfactory because it does not take into account a possible co-evolution of variable-trajectories. KmL3D is an R package that implements a version of k-means dedicated to clustering joint-trajectories. It provides facilities for the management of missing values, offers several quality criteria and its graphic interface helps the user to select the best partition. KmL3D can work with any number of joint-variable trajectories. In the restricted case of two joint trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic rotating-graphs to PDF format. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [1] Clustering of Trajectories using Non-Parametric Conformal DBSCAN Algorithm
    Wang, Haotian
    Gao, Jie
    Xie, Min-ge
    2022 21ST ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2022), 2022, : 451 - 462
  • [2] kml and kml3d: R Packages to Cluster Longitudinal Data
    Genolini, Christophe
    Alacoque, Xavier
    Sentenac, Mariane
    Arnaud, Catherine
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (04): : 1 - 34
  • [3] Event-Based Non-Parametric Clustering of Team Sport Trajectories
    Peng, Fengchao
    Ji, Yudian
    Luo, Qiong
    Ni, Lionel M.
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 994 - 999
  • [4] NonPC: Non-parametric clustering algorithm with adaptive noise detecting
    Li, Lin
    Chen, Xiang
    Song, Chengyun
    INTELLIGENT DATA ANALYSIS, 2023, 27 (05) : 1347 - 1358
  • [5] Clustering in non-parametric multivariate analyses
    Clarke, K. Robert
    Somerfield, Paul J.
    Gorley, Raymond N.
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2016, 483 : 147 - 155
  • [6] A non-parametric approach to simplicity clustering
    Hines, Peter
    Pothos, Emmanuel M.
    Chater, Nick
    APPLIED ARTIFICIAL INTELLIGENCE, 2007, 21 (08) : 729 - 752
  • [7] Non-parametric Mixture Models for Clustering
    Mallapragada, Pavan Kumar
    Jin, Rong
    Jain, Anil
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 334 - 343
  • [8] A Non-parametric Hierarchical Clustering Model
    Mohamad, Saad
    Bouchachia, Abdelhamid
    Sayed-Mouchaweh, Moamar
    2015 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2015,
  • [9] A Non-Parametric Generative Model for Human Trajectories
    Ouyang, Kun
    Shokri, Reza
    Rosenblum, David S.
    Yang, Wenzhuo
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3812 - 3817
  • [10] Non-parametric grid-based clustering algorithm for remote sensing data
    Pestunov, IA
    Sinyavsky, YN
    Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Signal and Image Processing, 2005, : 5 - 9