A Non-Parametric Generative Model for Human Trajectories

被引:0
|
作者
Ouyang, Kun [1 ,2 ]
Shokri, Reza [1 ]
Rosenblum, David S. [1 ]
Yang, Wenzhuo [2 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
[2] SAP Innovat Ctr Singapore, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modeling human mobility and generating synthetic yet realistic location trajectories play a fundamental role in many (privacy-aware) analysis and design processes that operate on location data. In this paper, we propose a non-parametric generative model for location trajectories that can capture high-order geographic and semantic features of human mobility. We design a simple and intuitive yet effective embedding for locations traces, and use generative adversarial networks to produce data points in this space, which will finally be transformed back to a sequential location trajectory form. We evaluate our method on realistic location trajectories and compare our synthetic traces with multiple existing methods on how they preserve geographic and semantic features of real traces at both aggregated and individual levels. Our empirical results prove the capability of our generative model in preserving various useful properties of real data.
引用
收藏
页码:3812 / 3817
页数:6
相关论文
共 50 条
  • [1] Non-Parametric Priors For Generative Adversarial Networks
    Singh, Rajhans
    Turaga, Pavan
    Jayasuriya, Suren
    Garg, Ravi
    Braun, Martin W.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [2] LEARNING A SPARSE GENERATIVE NON-PARAMETRIC SUPERVISED AUTOENCODER
    Barlaud, Michel
    Guyard, Frederic
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3315 - 3319
  • [3] A NON-PARAMETRIC MODEL FOR BALLISTOCARDIOGRAPHY
    Yao, Y.
    Schiefer, J.
    van Waasen, S.
    Schiek, M.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 69 - 72
  • [4] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [5] Clustering of Trajectories using Non-Parametric Conformal DBSCAN Algorithm
    Wang, Haotian
    Gao, Jie
    Xie, Min-ge
    2022 21ST ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2022), 2022, : 451 - 462
  • [6] A non-parametric topical relevance model
    Ganguly, Debasis
    Jones, Gareth J. F.
    INFORMATION RETRIEVAL JOURNAL, 2018, 21 (05): : 449 - 479
  • [7] A non-parametric topical relevance model
    Debasis Ganguly
    Gareth J. F. Jones
    Information Retrieval Journal, 2018, 21 : 449 - 479
  • [8] Non-parametric generalised newsvendor model
    Ghosh, Soham
    Mukhoti, Sujay
    ANNALS OF OPERATIONS RESEARCH, 2023, 321 (1-2) : 241 - 266
  • [9] A Sparse Non-parametric BRDF Model
    Tongbuasirilai, Tanaboon
    Unger, Jonas
    Guillemot, Christine
    Miandji, Ehsan
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (05):
  • [10] Non-parametric generalised newsvendor model
    Soham Ghosh
    Sujay Mukhoti
    Annals of Operations Research, 2023, 321 : 241 - 266