Implications of statistical power for confidence intervals

被引:13
|
作者
Liu, Xiaofeng Steven [1 ]
机构
[1] Univ S Carolina, Dept Educ Studies, Columbia, SC 29208 USA
关键词
SAMPLE-SIZE DETERMINATION;
D O I
10.1111/j.2044-8317.2011.02035.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The statistical power of a hypothesis test is closely related to the precision of the accompanying confidence interval. In the case of a z-test, the width of the confidence interval is a function of statistical power for the planned study. If minimum effect size is used in power analysis, the width of the confidence interval is the minimum effect size times a multiplicative factor f. The index f, or the precision-to-effect ratio, is a function of the computed statistical power. In the case of a t-test, statistical power affects the probability of achieving a certain width of confidence interval, which is equivalent to the probability of obtaining a certain value of f. To consider estimate precision in conjunction with statistical power, we can choose a sample size to obtain a desired probability of achieving a short width conditional on the rejection of the null hypothesis.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 50 条
  • [1] Effect size, confidence intervals and statistical power in psychological research
    Tellez, Arnoldo
    Garcia, Cirilo H.
    Corral-Verdugo, Victor
    [J]. PSYCHOLOGY IN RUSSIA-STATE OF THE ART, 2015, 8 (03): : 27 - 46
  • [2] Statistical tests and confidence intervals
    Ferraris, GB
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (08) : 2037 - 2039
  • [3] Power and precision: A computer program for statistical power analysis and confidence intervals.
    Harrison, W
    [J]. PERSONNEL PSYCHOLOGY, 2002, 55 (04) : 1077 - 1080
  • [4] Confidence intervals and statistical significance
    Sedgwick, Philip
    [J]. BRITISH MEDICAL JOURNAL, 2012, 344
  • [5] STATISTICAL BRIEFING: CONFIDENCE INTERVALS
    Lamb, Christopher R.
    Pfeiffer, Dirk U.
    [J]. VETERINARY RADIOLOGY & ULTRASOUND, 2009, 50 (01) : 109 - 110
  • [6] Statistical inference with confidence intervals
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2015, 147 (05) : 632 - 634
  • [7] The power of confidence intervals
    Giunti, C
    Laveder, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 480 (2-3): : 763 - 770
  • [8] Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations
    Greenland, Sander
    Senn, Stephen J.
    Rothman, Kenneth J.
    Carlin, John B.
    Poole, Charles
    Goodman, Steven N.
    Altman, Douglas G.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2016, 31 (04) : 337 - 350
  • [9] Confidence intervals and statistical power of the 'Validation' ratio for surrogate or intermediate endpoints
    Freedman, LS
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 96 (01) : 143 - 153
  • [10] Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations
    Sander Greenland
    Stephen J. Senn
    Kenneth J. Rothman
    John B. Carlin
    Charles Poole
    Steven N. Goodman
    Douglas G. Altman
    [J]. European Journal of Epidemiology, 2016, 31 : 337 - 350