In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication (NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, AustraliaChongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
Li, Jueyou
Chen, Guo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, AustraliaChongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
Chen, Guo
Wu, Zhiyou
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R ChinaChongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
Wu, Zhiyou
He, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Elect & Informat Engn, Chongqing 400715, Peoples R ChinaChongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
机构:
Univ Estadual Campinas, Fac Engn Mecan, Dept Projeto Mecan, Campinas, SP, BrazilUniv Estadual Campinas, Fac Engn Mecan, Dept Projeto Mecan, Campinas, SP, Brazil
Bittencourt, ML
Douglas, CC
论文数: 0引用数: 0
h-index: 0
机构:Univ Estadual Campinas, Fac Engn Mecan, Dept Projeto Mecan, Campinas, SP, Brazil
Douglas, CC
Feijóo, RA
论文数: 0引用数: 0
h-index: 0
机构:Univ Estadual Campinas, Fac Engn Mecan, Dept Projeto Mecan, Campinas, SP, Brazil
机构:
Chinese Univ Hong Kong, Inst Data & Decis Analyt, Shenzhen, Peoples R China
Shenzhen Res Inst Big Data, Shenzhen, Peoples R ChinaChinese Univ Hong Kong, Inst Data & Decis Analyt, Shenzhen, Peoples R China
Pu, Shi
Nedic, Angelia
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USAChinese Univ Hong Kong, Inst Data & Decis Analyt, Shenzhen, Peoples R China