Effect of humidity and thermal cycling on the catalyst layer structural changes in polymer electrolyte membrane fuel cells

被引:56
|
作者
Chang, Yafei [1 ]
Liu, Jing [1 ]
Li, Ruitao [1 ]
Zhao, Jian [2 ]
Qin, Yanzhou [1 ]
Zhang, Junfeng [1 ]
Yin, Yan [1 ]
Li, Xianguo [1 ,2 ]
机构
[1] Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Lab Fuel Cell & Green Energy RD&D 20 20, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 国家重点研发计划; 加拿大自然科学与工程研究理事会;
关键词
Polymer electrolyte membrane fuel cell; Catalyst layer; Degradation; Relative humidity cycling; Thermal cycling; MICROSTRUCTURE CHANGES; MECHANICAL RESPONSE; DEGRADATION; PERFORMANCE; MITIGATION; TEMPERATURE; ASSEMBLIES; DEFECTS; CRACKS;
D O I
10.1016/j.enconman.2019.03.066
中图分类号
O414.1 [热力学];
学科分类号
摘要
Catalyst layer structural changes in polymer electrolyte membrane fuel cells have significant impact on the cell performance and durability. In this study, ex-situ experiments are designed to investigate the effect of humidity and/or thermal cycles on the structural changes of catalyst layers. The relative humidity and temperature are controlled by an environmental chamber and the catalyst layer structure is characterized by scanning electron microscopy and optical microscopy. The experimental results indicate that crack growth and development, catalyst agglomerate detachment, and surface bulges are the main structural changes of the catalyst layers. Applying relative humidity and thermal cycling simultaneously causes the most significant crack growth, while applying thermal cycling alone causes no appreciable changes. This indicates that the absolute humidity is the key parameter for the crack growth. Through cyclic voltammetry analysis, it is shown that the electrochemical active surface area decreases from 64.1 m(2) g(-1) to 49.1 m(2) g(-1) after 500 combined relative humidity and thermal cycles. Analyses of electrochemical impedance spectroscopy show that the charge transfer resistance and ohmic resistance increase significantly after 500 combined relative humidity and thermal cycles, causing the cell performance degradation.
引用
下载
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [21] In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells
    Lee, Dong-Hyun
    Jo, Wonhee
    Yuk, Seongmin
    Choi, Jaeho
    Choi, Sungyu
    Doo, Gisu
    Lee, Dong Wook
    Kim, Hee-Tak
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4682 - 4688
  • [22] Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells
    Cho, Yoon-Hwan
    Cho, Yong-Hun
    Jung, Namgee
    Ahn, Minjeh
    Kang, Yun Sik
    Chung, Dong Young
    Lim, Ju Wan
    Sung, Yung-Eun
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2012, 15 (02): : 109 - 114
  • [23] Catalyst layer doped with phosphotungstic acid for degradation mitigation in Polymer Electrolyte Membrane Fuel Cells
    Chen, Guang-Ying
    Wang, Cheng
    Lei, Yi-Jie
    Zhang, Jianbo
    Mao, Zong-Qiang
    Guo, Jian-Wei
    Wang, Jian-Long
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (36) : 16167 - 16172
  • [24] Ameliorating effect of silica addition in the anode-catalyst layer of the membrane electrode assemblies for polymer electrolyte fuel cells
    Sahu, A. K.
    Selvarani, G.
    Pitchumani, S.
    Sridhar, P.
    Shukla, A. K.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2007, 37 (08) : 913 - 919
  • [25] Ameliorating effect of silica addition in the anode-catalyst layer of the membrane electrode assemblies for polymer electrolyte fuel cells
    A. K. Sahu
    G. Selvarani
    S. Pitchumani
    P. Sridhar
    A. K. Shukla
    Journal of Applied Electrochemistry, 2007, 37 : 913 - 919
  • [26] Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells
    Liu, Hang
    George, Michael G.
    Ge, Nan
    Muirhead, Daniel
    Shrestha, Pranay
    Lee, Jongmin
    Banerjee, Rupak
    Zeis, Roswitha
    Messerschmidt, Matthias
    Scholta, Joachim
    Krolla, Peter
    Bazylak, Aimy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) : F3271 - F3280
  • [27] Effect of contaminants on polymer electrolyte membrane fuel cells
    Zamel, Nada
    Li, Xianguo
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) : 292 - 329
  • [28] Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells
    Zamel, Nada
    Becker, Juergen
    Wiegmann, Andreas
    JOURNAL OF POWER SOURCES, 2012, 207 : 70 - 80
  • [29] Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells
    Eikerling, M
    Kornyshev, AA
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 453 (1-2) : 89 - 106
  • [30] Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells
    Eikerling, M
    Kornyshev, AA
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02): : 107 - 123