Effect of humidity and thermal cycling on the catalyst layer structural changes in polymer electrolyte membrane fuel cells

被引:56
|
作者
Chang, Yafei [1 ]
Liu, Jing [1 ]
Li, Ruitao [1 ]
Zhao, Jian [2 ]
Qin, Yanzhou [1 ]
Zhang, Junfeng [1 ]
Yin, Yan [1 ]
Li, Xianguo [1 ,2 ]
机构
[1] Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Lab Fuel Cell & Green Energy RD&D 20 20, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 国家重点研发计划; 中国国家自然科学基金;
关键词
Polymer electrolyte membrane fuel cell; Catalyst layer; Degradation; Relative humidity cycling; Thermal cycling; MICROSTRUCTURE CHANGES; MECHANICAL RESPONSE; DEGRADATION; PERFORMANCE; MITIGATION; TEMPERATURE; ASSEMBLIES; DEFECTS; CRACKS;
D O I
10.1016/j.enconman.2019.03.066
中图分类号
O414.1 [热力学];
学科分类号
摘要
Catalyst layer structural changes in polymer electrolyte membrane fuel cells have significant impact on the cell performance and durability. In this study, ex-situ experiments are designed to investigate the effect of humidity and/or thermal cycles on the structural changes of catalyst layers. The relative humidity and temperature are controlled by an environmental chamber and the catalyst layer structure is characterized by scanning electron microscopy and optical microscopy. The experimental results indicate that crack growth and development, catalyst agglomerate detachment, and surface bulges are the main structural changes of the catalyst layers. Applying relative humidity and thermal cycling simultaneously causes the most significant crack growth, while applying thermal cycling alone causes no appreciable changes. This indicates that the absolute humidity is the key parameter for the crack growth. Through cyclic voltammetry analysis, it is shown that the electrochemical active surface area decreases from 64.1 m(2) g(-1) to 49.1 m(2) g(-1) after 500 combined relative humidity and thermal cycles. Analyses of electrochemical impedance spectroscopy show that the charge transfer resistance and ohmic resistance increase significantly after 500 combined relative humidity and thermal cycles, causing the cell performance degradation.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [1] Ratcheting assessment of the catalyst layer in polymer electrolyte membrane fuel cells considering thermal-mechanical-humidity cycling
    Ding, Peishan
    Zheng, Xiaotao
    Chen, Haofeng
    Tu, Shantung
    [J]. APPLIED ENERGY, 2024, 357
  • [2] Mechanical degradation of catalyst layer under accelerated relative humidity cycling in a polymer electrolyte membrane fuel cell
    Liu, Jing
    Yin, Yan
    Zhang, Junfeng
    Zhang, Tong
    Zhang, Xiaojie
    Chen, Huicui
    [J]. JOURNAL OF POWER SOURCES, 2021, 512
  • [3] Effect of Organic Solvents on Catalyst Layer Structure in Polymer Electrolyte Membrane Fuel Cells
    Chisaka, Mitsuharu
    Daiguji, Hirofumi
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : B22 - B26
  • [4] Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells
    Tavassoli, Arash
    Lim, Chan
    Kolodziej, Joanna
    Lauritzen, Michael
    Knights, Shanna
    Wang, G. Gary
    Kjeang, Erik
    [J]. JOURNAL OF POWER SOURCES, 2016, 322 : 17 - 25
  • [5] Modelling of mechanical microstructure changes in the catalyst layer of a polymer electrolyte membrane fuel cell
    Chang, Yafei
    Zhao, Jian
    Shahgaldi, Samaneh
    Qin, Yanzhou
    Yin, Yan
    Li, Xianguo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (54) : 29904 - 29916
  • [6] Investigation of the effect of carbon-covering layer on catalyst layer in polymer electrolyte membrane fuel cell in low relative humidity condition
    Jang, Segeun
    Seol, Changwook
    Kang, Yun Sik
    Kim, Sang Moon
    Yoo, Sung Jong
    [J]. JOURNAL OF POWER SOURCES, 2019, 436
  • [7] Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells
    Zhang, Jujia
    Wang, Haining
    Li, Wen
    Zhang, Jin
    Lu, Di
    Yan, Wenrui
    Xiang, Yan
    Lu, Shanfu
    [J]. JOURNAL OF POWER SOURCES, 2021, 505
  • [8] Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1-Experimental study
    Ahadi, Mohammad
    Tam, Mickey
    Saha, Madhu S.
    Stumper, Jurgen
    Bahrami, Majid
    [J]. JOURNAL OF POWER SOURCES, 2017, 354 : 207 - 214
  • [9] Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 2-Analytical modeling
    Ahadi, Mohammad
    Putz, Andreas
    Stumper, Jurgen
    Bahrami, Majid
    [J]. JOURNAL OF POWER SOURCES, 2017, 354 : 215 - 228
  • [10] Effect of dispersant on catalyst ink properties and catalyst layer structure for high performance polymer electrolyte membrane fuel cells
    So, Soonyong
    Oh, Keun-Hwan
    [J]. JOURNAL OF POWER SOURCES, 2023, 561