All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

被引:452
|
作者
Wang, Gang [1 ,2 ]
Melkonyan, Ferdinand S. [1 ,2 ]
Facchetti, Antonio [1 ,2 ,3 ]
Marks, Tobin J. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Mat Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Northwestern Univ, Argonne Northwestern Solar Energy Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] Flexterra Corp, 8025 Lamon Ave, Skokie, IL 60077 USA
关键词
all-polymer solar cells; bulk heterojunction; morphology engineering; organic photovoltaics; stability; SMALL-MOLECULE ACCEPTOR; CONJUGATED POLYMER; DONOR-POLYMER; PERFORMANCE; EFFICIENCY; WEIGHT; OPTIMIZATION; AGGREGATION; GENERATION; MORPHOLOGY;
D O I
10.1002/anie.201808976
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For over two decades bulk-heterojunction polymer solar cell (BHJ-PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non-fullerene PSCs developing very rapidly. The power conversion efficiencies of non-fullerene PSCs have now reached over 15%, which is far above the most efficient fullerene-based PSCs. Among the various non-fullerene PSCs, all-polymer solar cells (APSCs) based on polymer donor-polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long-term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.
引用
收藏
页码:4129 / 4142
页数:14
相关论文
共 50 条
  • [31] Recent Progress of All Polymer Solar Cells with Efficiency Over 15%
    Zhang, Lu
    Yao, Zhigang
    Wang, Hanyu
    Zhang, Jian
    Ma, Xiaoling
    Zhang, Fujun
    SOLAR RRL, 2023, 7 (12)
  • [32] Semitransparent all-polymer solar cells through lamination
    Xia, Yuxin
    Xu, Xiaofeng
    Aguirre, Luis Ever
    Inganas, Olle
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) : 21186 - 21192
  • [33] Domain size control in all-polymer solar cells
    Liu, Jiangang
    Yin, Yukai
    Wang, Kang
    Wei, Puxin
    Lu, Haodong
    Song, Chunpeng
    Liang, Qiuju
    Huang, Wei
    ISCIENCE, 2022, 25 (04)
  • [34] Flexible, highly efficient all-polymer solar cells
    Kim, Taesu
    Kim, Jae-Han
    Kang, Tae Eui
    Lee, Changyeon
    Kang, Hyunbum
    Shin, Minkwan
    Wang, Cheng
    Ma, Biwu
    Jeong, Unyong
    Kim, Taek-Soo
    Kim, Bumjoon J.
    NATURE COMMUNICATIONS, 2015, 6
  • [35] Flexible, highly efficient all-polymer solar cells
    Taesu Kim
    Jae-Han Kim
    Tae Eui Kang
    Changyeon Lee
    Hyunbum Kang
    Minkwan Shin
    Cheng Wang
    Biwu Ma
    Unyong Jeong
    Taek-Soo Kim
    Bumjoon J. Kim
    Nature Communications, 6
  • [36] Device physics of inverted all-polymer solar cells
    Brenner, Thomas J. K.
    Hwang, Inchan
    Greenham, Neil C.
    McNeill, Christopher R.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
  • [37] Polythiophene and its derivatives for all-polymer solar cells
    Bai, Qingqing
    Cheng, Yanxiang
    Wang, Wei
    Chen, Junwu
    Sun, Huiliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (27) : 16251 - 16267
  • [38] High efficiency all-polymer tandem solar cells
    Yuan, Jianyu
    Gu, Jinan
    Shi, Guozheng
    Sun, Jianxia
    Wang, Hai-Qiao
    Ma, Wanli
    SCIENTIFIC REPORTS, 2016, 6
  • [39] Polythiophene Derivatives for Efficient All-Polymer Solar Cells
    An, Mingwei
    Bai, Qingqing
    Jeong, Sang Young
    Ding, Jianwei
    Zhao, Chaoyue
    Liu, Bin
    Liang, Qiming
    Wang, Yimei
    Zhang, Guangye
    Woo, Han Young
    Qiu, Xiaohui
    Niu, Li
    Guo, Xugang
    Sun, Huiliang
    ADVANCED ENERGY MATERIALS, 2023, 13 (30)
  • [40] High efficiency all-polymer tandem solar cells
    Jianyu Yuan
    Jinan Gu
    Guozheng Shi
    Jianxia Sun
    Hai-Qiao Wang
    Wanli Ma
    Scientific Reports, 6