Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple Candida Species

被引:2
|
作者
Lombardi, Lisa [1 ]
Oliveira-Pacheco, Joao [1 ]
Butler, Geraldine [1 ]
机构
[1] Univ Coll Dublin, Sch Biomol & Biomed Sci, Conway Inst, Dublin, Ireland
来源
MSPHERE | 2019年 / 4卷 / 02期
基金
爱尔兰科学基金会; 欧盟地平线“2020”;
关键词
CRISPR; Candida; genome; WEB TOOL; PARAPSILOSIS; PATHOGEN; DISRUPTION; CHOPCHOP; DELETION; ALBICANS;
D O I
10.1128/mSphere.00125-19
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Many Candida species that cause infection have diploid genomes and do not undergo classical meiosis. The application of clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) gene editing systems has therefore greatly facilitated the generation of gene disruptions and the introduction of specific polymorphisms. However, CRISPR methods are not yet available for all Candida species. We describe here an adaption of a previously developed CRISPR system in Candida parapsilosis that uses an autonomously replicating plasmid. Guide RNAs can be introduced in a single cloning step and are released by cleavage between a tRNA and a ribozyme. The plasmid also contains CAS9 and a selectable nourseothricin SAT1 marker. It can be used for markerless editing in C. parapsilosis, C. orthopsilosis, and C. metapsilosis. We also show that CRISPR can easily be used to introduce molecular barcodes and to reintroduce wild-type sequences into edited strains. Heterozygous mutations can be generated, either by careful selection of the distance between the polymorphism and the Cas9 cut site or by providing two different repair templates at the same time. In addition, we have constructed a different autonomously replicating plasmid for CRISPR-Cas9 editing in Candida tropicalis. We show that editing can easily be carried out in multiple C. tropicalis isolates. Nonho-mologous end joining (NHEJ) repair occurs at a high level in C. metapsilosis and C. tropicalis. IMPORTANCE Candida species are a major cause of infection worldwide. The species associated with infection vary with geographical location and with patient population. Infection with Candida tropicalis is particularly common in South America and Asia, and Candida parapsilosis infections are more common in the very young. Molecular methods for manipulating the genomes of these species are still lacking. We describe a simple and efficient CRISPR-based gene editing system that can be applied in the C. parapsilosis species group, including the sister species Candida orthopsilosis and Candida metapsilosis. We have also constructed a separate system for gene editing in C. tropicalis.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Norton, Mary E.
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2021, 76 (06) : 327 - 329
  • [22] Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era
    Yagoubat, Akila
    Corrales, Rosa M.
    Bastien, Patrick
    Leveque, Maude F.
    Sterkers, Yvon
    TRENDS IN PARASITOLOGY, 2020, 36 (09) : 745 - 760
  • [23] Alzheimer disease mice improve with CRISPR-Cas9 gene editing
    Fyfe, Ian
    NATURE REVIEWS NEUROLOGY, 2019, 15 (05) : 247 - 247
  • [24] Gene Editing with Crispr-Cas9 for Treating Beta-Hemoglobinopathies
    Lee, Ciaran
    Bao, Gang
    Porteus, Matthew H.
    Cornu, Tatjana
    Miccio, Annarita
    Cradick, Thomas
    Cathomen, Toni
    Lundberg, Ante
    Mavilio, Fulvio
    BLOOD, 2015, 126 (23)
  • [25] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Haydar Frangoul
    四川生理科学杂志, 2020, 42 (04) : 506 - 506
  • [26] Gene Editing and Crop Improvement Using CRISPR-Cas9 System
    Arora, Leena
    Narula, Alka
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [27] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03): : 252 - 260
  • [28] Application of CRISPR-Cas9 gene editing for congenital heart disease
    Seok, Heeyoung
    Deng, Rui
    Cowan, Douglas B.
    Wang, Da-Zhi
    CLINICAL AND EXPERIMENTAL PEDIATRICS, 2021, 64 (06) : 269 - 279
  • [29] Reversible RNA acylation for control of CRISPR-Cas9 gene editing
    Habibian, Maryam
    McKinlay, Colin
    Blake, Timothy R.
    Kietrys, Anna M.
    Waymouth, Robert M.
    Wender, Paul A.
    Kool, Eric T.
    CHEMICAL SCIENCE, 2020, 11 (04) : 1011 - 1016
  • [30] CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy
    Fontana, Marianna
    Solomon, Scott D.
    Kachadourian, Jessica
    Walsh, Liron
    Rocha, Ricardo
    Lebwohl, David
    Smith, Derek
    Taubel, Jorg
    Gane, Edward J.
    Pilebro, Bjorn
    Adams, David
    Razvi, Yousuf
    Olbertz, Joy
    Haagensen, Alexandra
    Zhu, Peijuan
    Xu, Yuanxin
    Leung, Adia
    Sonderfan, Alison
    Gutstein, David E.
    Gillmore, Julian D.
    NEW ENGLAND JOURNAL OF MEDICINE, 2024, 391 (23): : 2231 - 2241