Mathematical Modeling of MPNs Offers Understanding and Decision Support for Personalized Treatment

被引:7
|
作者
Ottesen, Johnny T. [1 ]
Pedersen, Rasmus K. [1 ]
Dam, Marc J. B. [1 ]
Knudsen, Trine A. [2 ]
Skov, Vibe [2 ]
Kjaer, Lasse [2 ]
Andersen, Morten [1 ]
机构
[1] Roskilde Univ, Dept Sci & Environm, IMFUFA, DK-4000 Roskilde, Denmark
[2] Zealand Univ Hosp, Dept Haematol, DK-2022 Roskilde, Denmark
关键词
blood cancer; myeloproliferative neoplasms; mathematical modeling; personalized treatment; REVISED RESPONSE CRITERIA; HEMATOPOIETIC STEM-CELLS; ACUTE MYELOID-LEUKEMIA; CHRONIC HEPATITIS-C; POLYCYTHEMIA-VERA; MYELOPROLIFERATIVE NEOPLASMS; ESSENTIAL THROMBOCYTHEMIA; INTERFERON-ALPHA; IWG-MRT; CANCER;
D O I
10.3390/cancers12082119
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
(1) Background: myeloproliferative neoplasms (MPNs) are slowly developing hematological cancers characterized by few driver mutations, withJAK2V617F being the most prevalent. (2) Methods: using mechanism-based mathematical modeling (MM) of hematopoietic stem cells, mutated hematopoietic stem cells, differentiated blood cells, and immune response along with longitudinal data from the randomized Danish DALIAH trial, we investigate the effect of the treatment of MPNs with interferon-alpha 2 on disease progression. (3) Results: At the population level, theJAK2V617F allele burden is halved every 25 months. At the individual level, MM describes and predicts theJAK2V617F kinetics and leukocyte- and thrombocyte counts over time. The model estimates the patient-specific treatment duration, relapse time, and threshold dose for achieving a good response to treatment. (4) Conclusions: MM in concert with clinical data is an important supplement to understand and predict the disease progression and impact of interventions at the individual level.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] Mathematical modeling of cancer immunotherapy for personalized clinical translation
    Joseph D. Butner
    Prashant Dogra
    Caroline Chung
    Renata Pasqualini
    Wadih Arap
    John Lowengrub
    Vittorio Cristini
    Zhihui Wang
    Nature Computational Science, 2022, 2 : 785 - 796
  • [22] Mathematical modeling of cancer immunotherapy for personalized clinical translation
    Butner, Joseph D.
    Dogra, Prashant
    Chung, Caroline
    Pasqualini, Renata
    Arap, Wadih
    Lowengrub, John
    Cristini, Vittorio
    Wang, Zhihui
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (12): : 785 - 796
  • [23] Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course
    Sen Zeytun, Aysel
    Cetinkaya, Bulent
    Erbas, Ayhan Kursat
    EURASIA JOURNAL OF MATHEMATICS SCIENCE AND TECHNOLOGY EDUCATION, 2017, 13 (03) : 691 - 722
  • [24] Personalized Plasma Medicine for Cancer: Transforming Treatment Strategies with Mathematical Modeling and Machine Learning Approaches
    Ramaswamy, Viswambari Devi
    Keidar, Michael
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [25] Designing personalized intelligent financial decision support systems
    Palma-dos-Reis, A
    Zahedi, FM
    DECISION SUPPORT SYSTEMS, 1999, 26 (01) : 31 - 47
  • [26] Decision support systems for personalized and participative radiation oncology
    Lambin, Philippe
    Zindler, Jaap
    Vanneste, Ben G. L.
    Van De Voorde, Lien
    Eekers, Danielle
    Compter, Inge
    Panth, Kranthi Marella
    Peerlings, Jurgen
    Larue, Ruben T. H. M.
    Deist, Timo M.
    Jochems, Arthur
    Lustberg, Tim
    van Soest, Johan
    de Jong, Evelyn E. C.
    Even, Aniek J. G.
    Reymen, Bart
    Rekers, Nicolle
    van Gisbergen, Marike
    Roelofs, Erik
    Carvalho, Sara
    Leijenaar, Ralph T. H.
    Zegers, Catharina M. L.
    Jacobs, Maria
    van Timmeren, Janita
    Brouwers, Patricia
    Lal, Jonathan A.
    Dubois, Ludwig
    Yaromina, Ala
    Van Limbergen, Evert Jan
    Berbee, Maaike
    van Elmpt, Wouter
    Oberije, Cary
    Ramaekers, Bram
    Dekker, Andre
    Boersma, Liesbeth J.
    Hoebers, Frank
    Smits, Kim M.
    Berlanga, Adriana J.
    Walsh, Sean
    ADVANCED DRUG DELIVERY REVIEWS, 2017, 109 : 131 - 153
  • [27] Mathematical Support of Decision Support System When Managing A Company
    Mitsel, A. A.
    Kozlov, S. V.
    Kataev, M. Yu.
    Maslov, A. V.
    PROCEEDINGS OF THE 2016 CONFERENCE ON INFORMATION TECHNOLOGIES IN SCIENCE, MANAGEMENT, SOCIAL SPHERE AND MEDICINE (ITSMSSM), 2016, 51 : 139 - 146
  • [28] Uncertainty modeling and decision support
    Yager, RR
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2004, 85 (1-3) : 341 - 354
  • [29] DECISION SUPPORT WITH DECISION-MODELING SOFTWARE
    MAIN, L
    LIBRARY SOFTWARE REVIEW, 1987, 6 (03): : 128 - 133
  • [30] Risk Modeling for Decision Support
    Yager, Ronald R.
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 375 - 388