Power spectra in a zero-range process on a ring: total occupation number in a segment

被引:2
|
作者
Angel, A. G. [1 ,2 ]
Zia, R. K. P. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
[2] John Innes Ctr, Dept Computat & Syst Biol, Norwich NR4 7UH, Norfolk, England
基金
美国国家科学基金会;
关键词
driven diffusive systems (theory); zero-range processes; CRITICAL-BEHAVIOR; FIELD-THEORY; MONTE-CARLO; SYSTEMS; KINETICS; MODELS;
D O I
10.1088/1742-5468/2009/03/P03009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the dynamics of density fluctuations in the steady state of a non-equilibrium system, the zero-range process on a ring lattice. Measuring the time series of the total number of particles in a segment of the lattice, we find remarkable structures in the associated power spectra, namely, two distinct components of damped oscillations. The essential origin of both components is shown in a simple pedagogical model. Using a more sophisticated theory, with an effective drift-diffusion equation governing the stochastic evolution of the local particle density, we provide reasonably good fits to the simulation results. The effects of altering various parameters are explored in detail. Avenues for improving this theory and deeper understanding of the role of particle interactions are indicated.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Lower Current Large Deviations for Zero-Range Processes on a Ring
    Chleboun, Paul
    Grosskinsky, Stefan
    Pizzoferrato, Andrea
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (01) : 64 - 89
  • [22] HAMILTONIAN WITH ZERO-RANGE POTENTIALS HAVING INFINITE NUMBER OF EIGENVALUES
    Boitsev, A. A.
    Popov, I. Yu.
    Sokolov, O. V.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (04): : 9 - 19
  • [23] DENSITY FLUCTUATIONS FOR A ZERO-RANGE PROCESS ON THE PERCOLATION CLUSTER
    Goncalves, Patricia
    Jara, Milton
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 382 - 395
  • [24] Power laws in zero-range processes on random networks
    B. Waclaw
    Z. Burda
    W. Janke
    The European Physical Journal B, 2008, 65
  • [25] Finite-size effects on the dynamics of the zero-range process
    Gupta, Shamik
    Barma, Mustansir
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [26] The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model
    Qi Kai
    Tang Ming
    Cui Ai-Xiang
    Fu Yan
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [27] HYDRODYNAMICS IN A CONDENSATION REGIME: THE DISORDERED ASYMMETRIC ZERO-RANGE PROCESS
    Bahadoran, C.
    Mountford, T.
    Ravishankar, K.
    Saada, E.
    ANNALS OF PROBABILITY, 2020, 48 (01): : 404 - 444
  • [28] Discontinuous Condensation Transition and Nonequivalence of Ensembles in a Zero-Range Process
    Stefan Grosskinsky
    Gunter M. Schütz
    Journal of Statistical Physics, 2008, 133 : 801 - 803
  • [29] Condensate formation in a zero-range process with random site capacities
    Gupta, Shamik
    Barma, Mustansir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [30] Spatial correlations in exclusion models corresponding to the zero-range process
    Basu, Urna
    Mohanty, P. K.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,