Power spectra in a zero-range process on a ring: total occupation number in a segment

被引:2
|
作者
Angel, A. G. [1 ,2 ]
Zia, R. K. P. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
[2] John Innes Ctr, Dept Computat & Syst Biol, Norwich NR4 7UH, Norfolk, England
基金
美国国家科学基金会;
关键词
driven diffusive systems (theory); zero-range processes; CRITICAL-BEHAVIOR; FIELD-THEORY; MONTE-CARLO; SYSTEMS; KINETICS; MODELS;
D O I
10.1088/1742-5468/2009/03/P03009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the dynamics of density fluctuations in the steady state of a non-equilibrium system, the zero-range process on a ring lattice. Measuring the time series of the total number of particles in a segment of the lattice, we find remarkable structures in the associated power spectra, namely, two distinct components of damped oscillations. The essential origin of both components is shown in a simple pedagogical model. Using a more sophisticated theory, with an effective drift-diffusion equation governing the stochastic evolution of the local particle density, we provide reasonably good fits to the simulation results. The effects of altering various parameters are explored in detail. Avenues for improving this theory and deeper understanding of the role of particle interactions are indicated.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Zero-range process with open boundaries
    Levine, E
    Mukamel, D
    Schütz, GM
    JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (5-6) : 759 - 778
  • [2] Zero-Range Process with Open Boundaries
    E. Levine
    D. Mukamel
    G. M. Schütz
    Journal of Statistical Physics, 2005, 120 : 759 - 778
  • [3] ZERO-RANGE PROCESS WITH A TAGGED PARTICLE
    SAADA, E
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1990, 26 (01): : 5 - 17
  • [4] SOME COMPLEMENTS ON THE MISANTHROPE PROCESS AND THE ZERO-RANGE PROCESS
    ANDJEL, E
    COCOZZATHIVENT, C
    ROUSSIGNOL, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (04): : 363 - 382
  • [5] Hydrodynamics of the zero-range process in the condensation regime
    Schuetz, G. M.
    Harris, R. J.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) : 419 - 430
  • [6] HYDRODYNAMICAL LIMIT FOR THE ASYMMETRIC ZERO-RANGE PROCESS
    BENASSI, A
    FOUQUE, JP
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1988, 24 (02): : 189 - 200
  • [7] Hydrodynamics of the Zero-Range Process in the Condensation Regime
    G. M. Schütz
    R. J. Harris
    Journal of Statistical Physics, 2007, 127 : 419 - 430
  • [8] Phase transition in two species zero-range process
    Evans, MR
    Hanney, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (28): : L441 - L447
  • [9] Hydrodynamic Limit for a Zero-Range Process in the Sierpinski Gasket
    Milton Jara
    Communications in Mathematical Physics, 2009, 288 : 773 - 797
  • [10] Hydrodynamic Limit for a Zero-Range Process in the Sierpinski Gasket
    Jara, Milton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) : 773 - 797