TWO-SEX BRANCHING POPULATIONS WITH PROGENITOR COUPLES IN A RANDOM ENVIRONMENT

被引:2
|
作者
Ma, Shixia [1 ]
Molina, Manuel [2 ]
Xing, Yongsheng [3 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin, Peoples R China
[2] Univ Extremadura, Dept Math, Badajoz 06006, Spain
[3] Shandong Inst Technol, Coll Math, Jinan, Peoples R China
关键词
branching models; population dynamics; random environments; two-sex populations;
D O I
10.1080/08898480.2012.718937
中图分类号
C921 [人口统计学];
学科分类号
摘要
In a two-sex branching model, progenitor couples are affected by random factors. The probability and the time to extinction are expressed and simulated.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [31] Sex-Biased Dispersal and the Speed of Two-Sex Invasions
    Miller, Tom E. X.
    Shaw, Allison K.
    Inouye, Brian D.
    Neubert, Michael G.
    AMERICAN NATURALIST, 2011, 177 (05): : 549 - 561
  • [32] Extinction Probability of Some Recessive Alleles of X-Linked Genes in the Context of Two-Sex Branching Processes
    Gonzalez, Miguel
    Gutierrez, Cristina
    Martinez, Rodrigo
    Mota, Manuel
    BRANCHING PROCESSES AND THEIR APPLICATIONS, 2016, 219 : 287 - 305
  • [33] Branching Diffusions in Random Environment
    Boeinghoff, C.
    Hutzenthaler, M.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (02) : 269 - 310
  • [34] Coalescent results for two-sex population models
    Mohle, M
    ADVANCES IN APPLIED PROBABILITY, 1998, 30 (02) : 513 - 520
  • [35] A note on 'A generalized two-sex logistic model'
    Maxin, D.
    Sega, L.
    JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 (01) : 102 - 108
  • [36] Insights into two-sex population models 2
    Milner, Fabio Augusto
    MATHEMATICAL POPULATION STUDIES, 2016, 23 (01) : 1 - 2
  • [37] Nonergodic Quadratic Operators for a Two-Sex Population
    N. N. Ganikhodzhaev
    U. U. Zhamilov
    R. T. Mukhitdinov
    Ukrainian Mathematical Journal, 2014, 65 : 1282 - 1291
  • [38] Two-sex mosquito model for the persistence of Wolbachia
    Xue, Ling
    Manore, Carrie A.
    Thongsripong, Panpim
    Hyman, James M.
    JOURNAL OF BIOLOGICAL DYNAMICS, 2017, 11 (01) : 216 - 237
  • [39] Confronting two-sex demographic models with data
    Miller, Tom E. X.
    Inouye, Brian D.
    ECOLOGY, 2011, 92 (11) : 2141 - 2151
  • [40] On a Volterra Dynamical System of a Two-Sex Population
    Rasulov, X. R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3975 - 3985