Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

被引:219
|
作者
Pharr, Matt [1 ]
Zhao, Kejie [1 ]
Wang, Xinwei [2 ]
Suo, Zhigang [1 ]
Vlassak, Joost J. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; silicon; kinetics; plasticity; ELECTROCHEMICAL LITHIATION; PLASTIC-DEFORMATION; STRUCTURAL-CHANGES; THERMAL-OXIDATION; THIN-FILMS; LI-ION; ANODES; PERFORMANCE; CAPACITY; NANOPILLARS;
D O I
10.1021/nl302841y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical experiments were conducted on {100}, {110}, and {111} silicon wafers to characterize the kinetics of the initial lithiation of crystalline Si electrodes. Under constant current conditions, we observed constant cell potentials for all orientations, indicating the existence of a phase boundary that separates crystalline silicon from the amorphous lithiated phase. For a given potential, the velocity of this boundary was found to be faster for {110} silicon than for the other two orientations. We show that our measurements of varying phase boundary velocities can accurately account for anisotropic morphologies and fracture developed in crystalline silicon nanopillars. We also present a kinetic model by considering the redox reaction at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical reaction at the lithiated silicon/crystalline silicon interface. From this model, we quantify the rates of the reactions at the interfaces and estimate a lower bound on the diffusivity through the lithiated silicon phase.
引用
收藏
页码:5039 / 5047
页数:9
相关论文
共 50 条
  • [21] Magnetron Sputtering Silicon Thin Film Electrodes for Lithium-Ion Batteries
    Evshchik, E.
    Novikov, D.
    Levchenko, A.
    Nefedkin, S.
    Shikhovtseva, A. V.
    Bushkova, O. V.
    Dobrovolsky, Yu. A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2860 - 2874
  • [22] Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries
    Zhang, Hongtao
    Xu, Hui
    SOLID STATE IONICS, 2014, 263 : 23 - 26
  • [23] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-Yu
    Lu, Shi-Gang
    Wang, Han
    Ding, Hai-Yang
    RARE METALS, 2013, 32 (03) : 299 - 304
  • [24] Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries
    Kuksenko, S. P.
    Konovalenko, I. O.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2011, 84 (07) : 1179 - 1187
  • [25] Competitive Lithiation Mechanism of Silicon in Aluminum-Silicon Alloy Foil Anodes for Lithium-Ion Batteries
    Xu, Chunyi
    Wang, Yingying
    Sun, Song
    King, Stephen
    Kurbanov, Mirtemir Shodievich
    Zhang, Xin
    Wang, Gongkai
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (46): : 17018 - 17025
  • [26] Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation
    Pharr, Matt
    Choi, Yong Seok
    Lee, Dongwoo
    Oh, Kyu Hwan
    Vlassak, Joost J.
    JOURNAL OF POWER SOURCES, 2016, 304 : 164 - 169
  • [27] Lithium Alanates as Negative Electrodes in Lithium-Ion Batteries
    Silvestri, Laura
    Forgia, Simona
    Farina, Luca
    Meggiolaro, Daniele
    Panero, Stefania
    La Barbera, Aurelio
    Brutti, Sergio
    Reale, Priscilla
    CHEMELECTROCHEM, 2015, 2 (06): : 877 - 886
  • [28] LITHIUM-ION BATTERIES Simply silicon
    Stoddart, Alison
    NATURE MATERIALS, 2015, 14 (03) : 260 - 260
  • [29] Nano silicon for lithium-ion batteries
    Holzapfel, Michael
    Buqa, Hilmi
    Hardwick, Laurence J.
    Hahn, Matthias
    Wuersig, Andreas
    Scheifele, Werner
    Novak, Petr
    Koetz, Ruediger
    Veit, Claudia
    Petrat, Frank-Martin
    ELECTROCHIMICA ACTA, 2006, 52 (03) : 973 - 978
  • [30] Erratum to: “Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries”
    S. P. Kuksenko
    I. O. Kovalenko
    Russian Journal of Applied Chemistry, 2012, 85 : 533 - 533