Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species

被引:79
|
作者
Stein-O'Brien, Genevieve L. [1 ,2 ,6 ,7 ]
Clark, Brian S. [2 ,16 ]
Sherman, Thomas [1 ]
Zibetti, Cristina [2 ]
Hu, Qiwen [14 ]
Sealfon, Rachel [15 ]
Liu, Sheng [5 ]
Qian, Jiang [5 ]
Colantuoni, Carlo [2 ,4 ]
Blackshaw, Seth [2 ,3 ,4 ,5 ,10 ]
Goff, Loyal A. [2 ,3 ,6 ]
Fertig, Elana J. [1 ,6 ,7 ,8 ,9 ,11 ,12 ,13 ]
机构
[1] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Div Biostat & Bioinformat, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Solomon H Snyder Dept Neurosci, Baltimore, MD USA
[3] Johns Hopkins Univ, Kavli Neurodiscovery Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Ophthalmol, Baltimore, MD USA
[6] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Inst Data Intens Engn & Sci, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Math Inst Data Sci, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Ctr Human Syst Biol, Baltimore, MD USA
[11] Johns Hopkins Univ, Inst Cell Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[14] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[15] Flatiron Inst, New York, NY USA
[16] Washington Univ, Dept Ophthalmol & Visual Sci, St Louis, MO 63130 USA
关键词
GENE-EXPRESSION; READ ALIGNMENT; RETINA; MOUSE;
D O I
10.1016/j.cels.2019.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.
引用
收藏
页码:395 / +
页数:25
相关论文
共 30 条
  • [21] Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies
    Cherry, Christopher
    Andorko, James I.
    Krishnan, Kavita
    Mejias, Joscelyn C.
    Nguyen, Helen Hieu
    Stivers, Katlin B.
    Gray-Gaillard, Elise F.
    Ruta, Anna
    Han, Jin
    Hamada, Naomi
    Hamada, Masakazu
    Sturmlechner, Ines
    Trewartha, Shawn
    Michel, John H.
    Davenport Huyer, Locke
    Wolf, Matthew T.
    Tam, Ada J.
    Pena, Alexis N.
    Keerthivasan, Shilpa
    Le Saux, Claude Jordan
    Fertig, Elana J.
    Baker, Darren J.
    Housseau, Franck
    van Deursen, Jan M.
    Pardoll, Drew M.
    Elisseeff, Jennifer H.
    GEROSCIENCE, 2023, 45 (04) : 2559 - 2587
  • [22] Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies
    Christopher Cherry
    James I. Andorko
    Kavita Krishnan
    Joscelyn C. Mejías
    Helen Hieu Nguyen
    Katlin B. Stivers
    Elise F. Gray-Gaillard
    Anna Ruta
    Jin Han
    Naomi Hamada
    Masakazu Hamada
    Ines Sturmlechner
    Shawn Trewartha
    John H. Michel
    Locke Davenport Huyer
    Matthew T. Wolf
    Ada J. Tam
    Alexis N. Peña
    Shilpa Keerthivasan
    Claude Jordan Le Saux
    Elana J. Fertig
    Darren J. Baker
    Franck Housseau
    Jan M. van Deursen
    Drew M. Pardoll
    Jennifer H. Elisseeff
    GeroScience, 2023, 45 : 2559 - 2587
  • [23] Optimized Transfer Learning for Chlorophyll Content Estimations across Datasets of Different Species Using Sun-Induced Chlorophyll Fluorescence and Reflectance
    Zhou, Yu-an
    Huang, Zichen
    Zhou, Weijun
    Cen, Haiyan
    REMOTE SENSING, 2024, 16 (11)
  • [24] Global Profiling of Reactive Oxygen and Nitrogen Species in Cell-free and Model Cellular Systems - Real Time Fluorescence Monitoring and HPLC Measurements
    Zielonka, Jacek
    Zielonka, Monika
    Sikora, Adam
    Adamus, Jan
    Joseph, Joy
    Hardy, Micael
    Ouari, Olivier
    Kalyanaraman, Balaraman
    FREE RADICAL BIOLOGY AND MEDICINE, 2010, 49 : S106 - S106
  • [25] Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets
    Erbe, Rossin
    Kessler, Michael D.
    Favorov, Alexander, V
    Easwaran, Hariharan
    Gaykalova, Daria A.
    Fertig, Elana J.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (12) : E68 - E68
  • [26] Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
    Wang, Yu Mei
    Sun, Yuzhi
    Wang, Beiying
    Wu, Zhiping
    He, Xiao Ying
    Zhao, Yuansong
    BRIEFINGS IN BIOINFORMATICS, 2023, 25 (01)
  • [27] RELATIONSHIP BETWEEN TRANSPORT OF GLUCOSE AND CATIONS ACROSS CELL-MEMBRANES IN ISOLATED TISSUES .9. ROLE OF CELLULAR CALCIUM IN ACTIVATION OF GLUCOSE-TRANSPORT SYSTEM IN RAT SOLEUS MUSCLE
    CLAUSEN, T
    ELBRINK, J
    DAHLHANSEN, AB
    BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 375 (02) : 292 - 308
  • [28] BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes
    Wang, Tongxin
    Johnson, Travis S.
    Shao, Wei
    Lu, Zixiao
    Helm, Bryan R.
    Zhang, Jie
    Huang, Kun
    GENOME BIOLOGY, 2019, 20 (01)
  • [29] BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes
    Tongxin Wang
    Travis S. Johnson
    Wei Shao
    Zixiao Lu
    Bryan R. Helm
    Jie Zhang
    Kun Huang
    Genome Biology, 20
  • [30] Evidence for suppression of cellular growth in vitro and selection against the indigenous mouse X chromosome in A9 cell hybrids after microcell-mediated transfer of an X from other mammalian species
    Islam, MQ
    Islam, K
    CYTOGENETICS AND CELL GENETICS, 2000, 88 (1-2): : 110 - 113