Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species

被引:75
|
作者
Stein-O'Brien, Genevieve L. [1 ,2 ,6 ,7 ]
Clark, Brian S. [2 ,16 ]
Sherman, Thomas [1 ]
Zibetti, Cristina [2 ]
Hu, Qiwen [14 ]
Sealfon, Rachel [15 ]
Liu, Sheng [5 ]
Qian, Jiang [5 ]
Colantuoni, Carlo [2 ,4 ]
Blackshaw, Seth [2 ,3 ,4 ,5 ,10 ]
Goff, Loyal A. [2 ,3 ,6 ]
Fertig, Elana J. [1 ,6 ,7 ,8 ,9 ,11 ,12 ,13 ]
机构
[1] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Div Biostat & Bioinformat, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Solomon H Snyder Dept Neurosci, Baltimore, MD USA
[3] Johns Hopkins Univ, Kavli Neurodiscovery Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Ophthalmol, Baltimore, MD USA
[6] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Inst Data Intens Engn & Sci, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Math Inst Data Sci, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Ctr Human Syst Biol, Baltimore, MD USA
[11] Johns Hopkins Univ, Inst Cell Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[14] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[15] Flatiron Inst, New York, NY USA
[16] Washington Univ, Dept Ophthalmol & Visual Sci, St Louis, MO 63130 USA
关键词
GENE-EXPRESSION; READ ALIGNMENT; RETINA; MOUSE;
D O I
10.1016/j.cels.2019.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.
引用
收藏
页码:395 / +
页数:25
相关论文
共 29 条
  • [1] Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species (vol 8, 395.e1, 2019)
    Stein-O'Brien, Genevieve L.
    Clark, Brian S.
    Sherman, Thomas
    Zibetti, Cristina
    Hu, Qiwen
    Sealfon, Rachel
    Liu, Sheng
    Qian, Jiang
    Colantuoni, Carlo
    Blackshaw, Seth
    Goff, Loyal A.
    Fertig, Elana J.
    [J]. CELL SYSTEMS, 2021, 12 (02) : 203 - 203
  • [2] A Transfer Learning Approach for Integrating Biological Data Across Platforms
    Achanta, Hema K.
    Misganaw, Burook
    Vidyasagar, M.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6695 - 6697
  • [3] Cell type matching across species using protein embeddings and transfer learning
    Biharie, Kirti
    Michielsen, Lieke
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    [J]. BIOINFORMATICS, 2023, 39 : i404 - i412
  • [4] Cell type matching across species using protein embeddings and transfer learning
    Biharie, Kirti
    Michielsen, Lieke
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    [J]. BIOINFORMATICS, 2023, 39 : I404 - I412
  • [5] Validation of a Serum Screen for Alzheimer's Disease Across Assay Platforms, Species, and Tissues
    O'Bryant, Sid E.
    Xiao, Guanghua
    Zhang, Fan
    Edwards, Melissa
    German, Dwight C.
    Yin, Xiangling
    Como, Tori
    Reisch, Joan
    Huebinger, Ryan M.
    Graff-Radford, Neill
    Dickson, Dennis
    Barber, Robert
    Hall, James
    O'Suilleabhain, Padraig
    Grammas, Paula
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2014, 42 (04) : 1325 - 1335
  • [7] Predicting senescence across tissues and species using deep learning
    Heckenbach, Indra
    Scheibye-Knudsen, Morten
    [J]. NATURE AGING, 2022, 2 (08): : 688 - 689
  • [8] Planar cell polarity signaling: coordination of cellular orientation across tissues
    Singh, Jaskirat
    Mlodzik, Marek
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2012, 1 (04) : 479 - 499
  • [9] SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species
    Tan, Yuqi
    Cahan, Patrick
    [J]. CELL SYSTEMS, 2019, 9 (02) : 207 - +
  • [10] CytoCensus, mapping cell identity and division in tissues and organs using machine learning
    Hailstone, Martin
    Waithe, Dominic
    Samuels, Tamsin J.
    Yang, Lu
    Costello, Ita
    Arava, Yoav
    Robertson, Elizabeth
    Parton, Richard M.
    Davis, Ilan
    [J]. ELIFE, 2020, 9 : 1 - 31