The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel

被引:114
|
作者
Niendorf, T. [1 ]
Lotze, C. [1 ]
Canadinc, D. [3 ]
Frehn, A. [2 ]
Maier, H. J. [1 ]
机构
[1] Univ Paderborn, Lehrstuhl Werkstoffkunde Mat Sci, D-33095 Paderborn, Germany
[2] Prod Grp Chassis Syst, D-33102 Paderborn, Germany
[3] Koc Univ, Dept Mech Engn, TR-34450 Istanbul, Turkey
关键词
Twinning-induced plasticity; TWIP steel; Bauschinger effect; Fatigue; Microstructure; Twinning; MECHANICAL-PROPERTIES; TRIP/TWIP STEELS; BEHAVIOR; ENERGY; GRAIN;
D O I
10.1016/j.msea.2008.09.033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fatigue performance of a high-manganese austenitic steel featuring the twinning-induced plasticity (TWIP) effect was investigated in both thermomechanically treated rolled and pre-deformed conditions. A thorough set of mechanical experiments and microstructural analyses demonstrated that microstructural evolutions during high-strain monotonic and low-strain cyclic deformations differ significantly. Specifically, a high twin density is obtained as a result of monotonic deformation, and a low twin density, yet a noticeable increase in twin thickness, is observed in the fatigued samples. Furthermore, the fatigue performance of the pre-deformed TWIP steel samples is superior to that of the as-received steel, which is attributed to the enhanced interaction of glide dislocations with twins of increased density owing to the monotonic pre-deformation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:518 / 524
页数:7
相关论文
共 50 条
  • [31] Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method
    G. Dini
    A. Najafizadeh
    S.M. Monir-Vaghefi
    R. Ueji
    JournalofMaterialsScience&Technology, 2010, 26 (02) : 181 - 186
  • [32] Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method
    Dini, G.
    Najafizadeh, A.
    Monir-Vaghefi, S. M.
    Ueji, R.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (02) : 181 - 186
  • [33] Tensile deformation behavior of high manganese austenitic steel: The role of grain size
    Dini, G.
    Najafizadeh, A.
    Ueji, R.
    Monir-Vaghefi, S. M.
    MATERIALS & DESIGN, 2010, 31 (07) : 3395 - 3402
  • [34] Effect of pre-deformation degree on tensile properties of high carbon high manganese steel at different strain rates
    Ma, Hua
    Chen, Chen
    Li, Junkui
    Wang, Xubiao
    Qi, Xiangyang
    Zhang, Fucheng
    Tang, Tiebing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 829
  • [35] Constitutive model of the TWIP effect in a polycrystalline high manganese content austenitic steel
    Allain, S
    Chateau, JP
    Bouaziz, O
    STEEL RESEARCH, 2002, 73 (6-7): : 299 - 302
  • [36] The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel
    Astafurova, E. G.
    Tukeeva, M. S.
    Zakharova, G. G.
    Melnikov, E. V.
    Maier, H. J.
    MATERIALS CHARACTERIZATION, 2011, 62 (06) : 588 - 592
  • [37] Deformation behavior of high-manganese TWIP steels produced by twin-roll strip casting
    Daamen, Markus
    Nessen, Wiebke
    Pinard, Philipp T.
    Richter, Silvia
    Schwedt, Alexander
    Hirt, Gerhard
    11TH INTERNATIONAL CONFERENCE ON TECHNOLOGY OF PLASTICITY, ICTP 2014, 2014, 81 : 1535 - 1540
  • [38] Deformation and fracture behaviour of high manganese austenitic steel
    Bayraktar, E
    Khalid, FA
    Levaillant, C
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 147 (02) : 145 - 154
  • [39] Microstructure - deformation relationships in fine grained high manganese TWIP - steel the role of local texture
    Ruesing, C. J.
    Niendorf, T.
    Lackmann, J.
    Frehn, A.
    Maier, H. J.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2012, 103 (01) : 12 - 16
  • [40] INFLUENCE OF MONOTONIC AND CYCLIC PRE-DEFORMATION ON FATIGUE CRACK-PROPAGATION OF HIGH-STRENGTH ALUMINUM-ALLOYS
    SCHULTE, K
    NOWACK, H
    ENGINEERING FRACTURE MECHANICS, 1980, 13 (04) : 1009 - 1021