Unconditionally Stable Time-Domain Mixed Finite-Element Method

被引:0
|
作者
Crawford, Zane D. [1 ,2 ]
Li, Jie [1 ]
Christlieb, Andrew [2 ]
Shanker, B. [1 ,2 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
关键词
STABILITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Previous work has developed a time-domain mixed finite-element method using Whitney 1-forms and Whitney 2-forms to represent the electric field and magnetic flux density, respectively in the coupled, first order Maxwell's equations. However, the leapfrog time-stepping scheme used in most of those works is conditionally stable, and the time step size is closely tied to the spatial discretization. In this work, we present an unconditionally stable time-stepping method for the time-domain mixed finite-element method based on the second order Newmark Beta time-stepping algorithm; at the conference, we will present a more elaborate/rigorous proofs on the stability of the algorithm given choices of certain parameters.
引用
收藏
页码:1789 / 1790
页数:2
相关论文
共 50 条
  • [21] The unconditionally stable pseudospectral time-domain (PSTD) method
    Gang, Z
    Qing, HL
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (11) : 475 - 477
  • [22] Modeling of magnetic loss in the finite-element time-domain method
    Riley, DJ
    Jin, JM
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (02) : 165 - 168
  • [23] Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media
    Donderici, Burkay
    Teixeira, Fernando L.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (01) : 113 - 120
  • [24] An unconditionally stable parallel finite element time domain algorithm
    Navsariwala, UD
    Gedney, S
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 112 - 115
  • [25] Discontinuous Galerkin Implementation of Domain Decomposition Time-Domain Finite-Element Method
    Ye, Zhenbao
    Wang, Chao-Fu
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2338 - 2341
  • [26] A General Time-Domain Finite-Element Method for Frequency-Domain Solutions
    Fu, W. N.
    Zhang, Xiu
    Ho, S. L.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (04) : 1284 - 1289
  • [27] A parallel finite-element time-domain method for transient electromagnetic simulation
    Fu, Haohuan
    Wang, Yingqiao
    Um, Evan Schankee
    Fang, Jiarui
    Wei, Tengpeng
    Huang, Xiaomeng
    Yang, Guangwen
    [J]. GEOPHYSICS, 2015, 80 (04) : E213 - E224
  • [28] Optimization of the perfectly matched layer for the finite-element time-domain method
    Movahhedi, Masoud
    Abdipour, Abdolali
    Ceric, Hajdin
    Sheikholeslami, Alireza
    Selberherr, Siegfried
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2007, 17 (01) : 10 - 12
  • [29] A Parallel Finite-Element Time-Domain Method for Nonlinear Dispersive Media
    Abraham, David S.
    Giannacopoulos, Dennis D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (02)
  • [30] Towards the Development of an Unconditionally Stable Time-Domain Meshless Method
    Yu, Yiqiang
    Chen, Zhizhang
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (03) : 578 - 586