USING DEEP LEARNING FOR DETECTION AND CLASSIFICATION OF INSECTS ON TRAPS

被引:2
|
作者
Teixeira, Ana Claudia [1 ,2 ]
Ribeiro, Jose [1 ]
Neto, Alexandre [1 ,2 ]
Morais, Raul [1 ,3 ]
Sousa, Joaquim J. [1 ,2 ]
Cunha, Antonio [1 ,2 ]
机构
[1] Univ Tras Os Montes & Alto Douro UTAD, Vila Real, Portugal
[2] INESC TEC, Ctr Robot Ind & Intelligent Syst, Porto, Portugal
[3] Ctr Res & Technol Agroenvironm & Biol Sci, Vila Real, Portugal
关键词
Insects detection; deep learning; Faster R-CNN; YOLOv5; anchor optimization;
D O I
10.1109/IGARSS46834.2022.9884452
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Insect pests are the main cause of loss of productivity and quality in crops worldwide. Insect monitoring becomes necessary for the early detection of pests and thus avoiding the excessive use of pesticides. Automatic detection of insects attracted by traps is a form of monitoring. Modern data-driven methods present great results for object detection when representative datasets are available, but public datasets for insect detection are few and small. Pest24 public dataset is extensive, but noisy resulting in a poor detection rate. In this work, we aim to improve insect detection in the Pest24 dataset. We propose the creation of three sub-datasets selecting the highest represented classes, the highest colour discrepancy, and the one with the highest relative scale, respectively. Several Faster R-CNN and YOLOv5 architectures are explored, and the best results are achieved with the YOLOv5 with an mAP of 95.5%.
引用
收藏
页码:5746 / 5749
页数:4
相关论文
共 50 条
  • [41] Deep fake detection and classification using error-level analysis and deep learning
    Rafique, Rimsha
    Gantassi, Rahma
    Amin, Rashid
    Frnda, Jaroslav
    Mustapha, Aida
    Alshehri, Asma Hassan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] Classification of fNIRS Data Using Deep Learning for Bipolar Disorder Detection
    Evgin, Haluk Barkin
    Babacan, Oguzhan
    Ulusoy, Ilkay
    Hosgoren, Yasemin
    Kusman, Adnan
    Sayar, Damla
    Baskak, Bora
    Ozguven, Halise Devrimci
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [43] Detection and classification of pulmonary nodules using deep learning and swarm intelligence
    Cesar Affonso de Pinho Pinheiro
    Nadia Nedjah
    Luiza de Macedo Mourelle
    Multimedia Tools and Applications, 2020, 79 : 15437 - 15465
  • [44] Detection and Classification of Network Traffic in Bot Network Using Deep Learning
    Srinarayani, K.
    Padmavathi, B.
    Datchanamoorthy, Kavitha
    Saraswathi, T.
    Maheswari, S.
    Vincy, R. Fatima
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2024, 23 (06)
  • [45] Automated detection and classification of early AMD biomarkers using deep learning
    Sajib Saha
    Marco Nassisi
    Mo Wang
    Sophiana Lindenberg
    Yogi kanagasingam
    Srinivas Sadda
    Zhihong Jewel Hu
    Scientific Reports, 9
  • [46] Recent Advancements in Fruit Detection and Classification Using Deep Learning Techniques
    Ukwuoma, Chiagoziem C. C.
    Zhiguang, Qin
    Bin Heyat, Md Belal
    Ali, Liaqat
    Almaspoor, Zahra
    Monday, Happy N. N.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [47] Fast Detection and Classification of Dangerous Urban Sounds Using Deep Learning
    Momynkulov, Zeinel
    Dosbayev, Zhandos
    Suliman, Azizah
    Abduraimova, Bayan
    Smailov, Nurzhigit
    Zhekambayeva, Maigul
    Zhamangarin, Dusmat
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 2191 - 2208
  • [48] Detection and classification of pulmonary nodules using deep learning and swarm intelligence
    de Pinho Pinheiro, Cesar Affonso
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15437 - 15465
  • [49] Drowning Victims Detection and River Classification Using Deep Learning Methods
    Novianti, Nur Laila
    Kristalina, Prima
    Hadi, Mochammad Zen Samsono
    2024 INTERNATIONAL ELECTRONICS SYMPOSIUM, IES 2024, 2024, : 656 - 662
  • [50] Automated detection and classification of early AMD biomarkers using deep learning
    Saha, Sajib
    Nassisi, Marco
    Wang, Mo
    Lindenberg, Sophiana
    Kanagasingam, Yogi
    Sadda, Srinivas
    Hu, Zhihong Jewel
    SCIENTIFIC REPORTS, 2019, 9 (1)