Algebraic Signal Processing Theory: 1-D Nearest Neighbor Models

被引:22
|
作者
Sandryhaila, Aliaksei [1 ]
Kovacevic, Jelena [1 ,2 ]
Pueschel, Markus [3 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[3] ETH, Dept Comp Sci, Zurich, Switzerland
关键词
Algebra; convolution; filter; Fourier transform; Hermite polynomials; Laguerre polynomials; Legendre polynomials; module; orthogonal polynomials; signal representation; shift; signal model; TUKEY-TYPE ALGORITHMS; POLYNOMIAL-TRANSFORMS; FEATURES;
D O I
10.1109/TSP.2012.2186133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a signal processing framework for the analysis of discrete signals represented as linear combinations of orthogonal polynomials. We demonstrate that this representation implicitly changes the associated shift operation from the standard time shift to the nearest neighbor shift introduced in this paper. Using the algebraic signal processing theory, we construct signal models based on this shift and derive their corresponding signal processing concepts, including the proper notions of signal and filter spaces, z-transform, convolution, spectrum, and Fourier transform. The presented results extend the algebraic signal processing theory and provide a general theoretical framework for signal analysis using orthogonal polynomials.
引用
收藏
页码:2247 / 2259
页数:13
相关论文
共 50 条
  • [41] Validation of 1-D transport and sawtooth models for ITER
    Connor, JW
    Alexander, M
    Attenberger, SE
    Bateman, G
    Boucher, D
    Chudnovskij, N
    Dnestrovskij, YN
    Dorland, W
    Fukuyama, A
    Hoang, GT
    Hogeweij, DMG
    Houlberg, WA
    Kaye, SM
    Kinsey, JE
    Konings, JA
    Kotschenreuther, M
    Kritz, AH
    Leonov, VM
    Marinucci, M
    Mikkelsen, DR
    Ongena, J
    Polevoj, AR
    Romanelli, F
    Schissel, DP
    Shirai, H
    Stubberfield, PM
    Takizuka, T
    Taroni, A
    Turner, MF
    Vlad, G
    Waltz, RE
    Weiland, J
    FUSION ENERGY 1996, VOL 2, 1997, : 935 - 944
  • [42] Nonequilibrium energy profiles for a class of 1-D models
    Eckmann, JP
    Young, LS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) : 237 - 267
  • [43] Spin coupling and magnetic field effects on the finite-size free energy and its non-extensivity for 1-D Ising model with nearest and next-nearest neighbor interactions in nanosystem
    Taherkhani, Farid
    Abroshan, Hadi
    Akbarzadeh, Hamed
    Fortunelli, Alessandro
    PHASE TRANSITIONS, 2012, 85 (07) : 577 - 591
  • [44] Application Of 1-D And 3-D Models In A Regional Context
    Paydar, Z.
    Khan, S.
    Rana, T.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 2939 - 2945
  • [45] Error Analysis of Subaperture Processing in 1-D Ultrasound Arrays
    Zhao, Kang-Qiao
    Bjastad, Tore Gruner
    Kristoffersen, Kjell
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2015, 62 (04) : 663 - 672
  • [46] 1-D maps, chaos and neural networks for information processing
    Andreyev, YV
    Dmitriev, AS
    Kuminov, DA
    Chua, LO
    Wu, CW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04): : 627 - 646
  • [47] 1-D and 2-D signals parallel processing in mixed formats
    Pogribny W.A.
    Radioelectronics and Communications Systems, 2012, 55 (3) : 115 - 123
  • [48] Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Real DFTs
    Voronenko, Yevgen
    Pueschel, Markus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 205 - 222
  • [49] Algebraic signal processing theory:: Cooley-Tukey type algorithms for DCTs and DSTs
    Pueschel, Markus
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (04) : 1502 - 1521
  • [50] LATTICE PERTURBATION-THEORY FOR O(N)-SYMMETRICAL SIGMA-MODELS WITH GENERAL NEAREST-NEIGHBOR ACTION .1. CONVENTIONAL PERTURBATION-THEORY
    CARACCIOLO, S
    PELISSETTO, A
    NUCLEAR PHYSICS B, 1994, 420 (1-2) : 141 - 183