Algebraic Signal Processing Theory: 1-D Nearest Neighbor Models

被引:22
|
作者
Sandryhaila, Aliaksei [1 ]
Kovacevic, Jelena [1 ,2 ]
Pueschel, Markus [3 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[3] ETH, Dept Comp Sci, Zurich, Switzerland
关键词
Algebra; convolution; filter; Fourier transform; Hermite polynomials; Laguerre polynomials; Legendre polynomials; module; orthogonal polynomials; signal representation; shift; signal model; TUKEY-TYPE ALGORITHMS; POLYNOMIAL-TRANSFORMS; FEATURES;
D O I
10.1109/TSP.2012.2186133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a signal processing framework for the analysis of discrete signals represented as linear combinations of orthogonal polynomials. We demonstrate that this representation implicitly changes the associated shift operation from the standard time shift to the nearest neighbor shift introduced in this paper. Using the algebraic signal processing theory, we construct signal models based on this shift and derive their corresponding signal processing concepts, including the proper notions of signal and filter spaces, z-transform, convolution, spectrum, and Fourier transform. The presented results extend the algebraic signal processing theory and provide a general theoretical framework for signal analysis using orthogonal polynomials.
引用
收藏
页码:2247 / 2259
页数:13
相关论文
共 50 条
  • [1] Algebraic Signal Processing Theory:: 1-D space
    Pueschel, Markus
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 3586 - 3599
  • [2] Algebraic signal processing theory:: Foundation and 1-D time
    Pueschel, Markus
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 3572 - 3585
  • [3] Algebraic Signal Processing Theory: Sampling for Infinite and Finite 1-D Space
    Kovacevic, Jelena
    Pueschel, Markus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (01) : 242 - 257
  • [4] Boomerons in a 1-D lattice with only nearest-neighbor interactions
    Katz, Shmuel
    Givli, Sefi
    EPL, 2020, 131 (06)
  • [5] RANDOM WALKS WITH NONNEAREST NEIGHBOR TRANSITIONS .1. ANALYTIC 1-D THEORY FOR NEXT-NEAREST NEIGHBOR AND EXPONENTIALLY DISTRIBUTED STEPS
    LAKATOSL.K
    SHULER, KE
    JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (04) : 633 - +
  • [6] Fast nearest-neighbor searching for nonlinear signal processing
    Merkwirth, Christian
    Parlitz, Ulrich
    Lauterborn, Werner
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 2089 - 2097
  • [7] LOCAL BINARY PATTERNS FOR 1-D SIGNAL PROCESSING
    Chatlani, Navin
    Soraghan, John J.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 95 - 99
  • [8] Fast nearest-neighbor searching for nonlinear signal processing
    Merkwirth, C
    Parlitz, U
    Lauterborn, W
    PHYSICAL REVIEW E, 2000, 62 (02): : 2089 - 2097
  • [9] Algebraic signal processing theory:: An overview
    Puschel, Markus
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 386 - 391
  • [10] On the existence of an analytic solution to the 1-D Ising model with nearest and next-nearest neighbor interactions in the presence of a magnetic field
    Taherkhani, Farid
    Daryaei, Ebrahim
    Abroshan, Hadi
    Akbarzadeh, Hamed
    Parsafar, Gholamabbas
    Fortunelli, Alessandro
    PHASE TRANSITIONS, 2011, 84 (01) : 77 - 84