Finite-frequency effects in global surface-wave tomography

被引:76
|
作者
Zhou, Y
Dahlen, FA
Nolet, G
Laske, G
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, IGPP, La Jolla, CA 92093 USA
关键词
Frechet derivatives; global seismology; sensitivity; surface waves; tomography;
D O I
10.1111/j.1365-246X.2005.02780.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We compare traditional ray-theoretical surface-wave tomography with finite-frequency tomography, using 3-D Born sensitivity kernels for long-period, fundamental-mode dispersion measurements. The 3-D kernels preserve sidelobes beyond the first Fresnel zone, and fully account for the directional dependence of surface-wave scattering, and the effects of time-domain tapering and seismic source radiation. Tomographic inversions of Love and Rayleigh phase-delay measurements and synthetic checkerboard tests show that (1) small-scale S-wave velocity anomalies are better resolved using finite-frequency sensitivity kernels, especially in the lowermost upper mantle; (2) the resulting upper-mantle heterogeneities are generally stronger in amplitude than those recovered using ray theory and (3) finite-frequency tomographic models fit long-period dispersion data better than ray-theoretical models of comparable roughness. We also examine the reliability of 2-D, phase-velocity sensitivity kernels in global surface-wave tomography, and show that phase-velocity kernels based upon a forward-scattering approximation or previously adopted geometrical simplifications do not reliably account for finite-frequency wave-propagation effects. 3-D sensitivity kernels with full consideration of directional-dependent seismic scattering are the preferred method of inverting long-period dispersion data. Finally, we derive 2-D boundary sensitivity kernels for lateral variations in crustal thickness, and show that finite-frequency crustal effects are not negligible in long-period surface-wave dispersion studies, especially for paths along continent-ocean boundaries. Unfortunately, we also show that, in global studies, linear perturbation theory is not sufficiently accurate to make reliable crustal corrections, due to the large difference in thickness between oceanic and continental crust.
引用
收藏
页码:1087 / 1111
页数:25
相关论文
共 50 条
  • [21] Finite-frequency traveltime tomography using the Generalized Rytov approximation
    Feng, B.
    Xu, W.
    Wu, R. S.
    Xie, X. B.
    Wang, H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 1412 - 1426
  • [22] FINITE-FREQUENCY SURFACE-WAVES ON CURRENT SHEETS
    WESSEN, KP
    CRAMER, NF
    JOURNAL OF PLASMA PHYSICS, 1991, 45 : 389 - 406
  • [23] Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography
    Tian, Yue
    Montelli, Raffaella
    Nolet, Guust
    Dahlen, F. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) : 2271 - 2288
  • [24] PROPAGATION OF THE MAGNETOSTATIC SURFACE-WAVE FINITE BEAM
    VASHKOVSKY, AV
    GRECHUSHKIN, KV
    STALMAKHOV, AV
    TYULYUKIN, VA
    RADIOTEKHNIKA I ELEKTRONIKA, 1988, 33 (04): : 876 - 879
  • [25] Measuring finite-frequency body-wave amplitudes and traveltimes
    Sigloch, Karin
    Nolet, Guust
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 167 (01) : 271 - 287
  • [26] MAGNETOSTATIC SURFACE-WAVE PROPAGATION IN FINITE SAMPLES
    OKEEFFE, TW
    PATTERSON, RW
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (09) : 4886 - 4895
  • [27] Finite-frequency tomography using adjoint methods. Methodology and examples using membrane surface waves
    Tape, Carl
    Liu, Qinya
    Tromp, Jeroen
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 168 (03) : 1105 - 1129
  • [28] Global finite-frequency S-wave delay-times: how much crust matters
    Dubois, Frederic
    Lambotte, Sophie
    Zaroli, Christophe
    Rivera, Luis
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (03) : 1665 - 1684
  • [29] Global finite-frequency S-wave delay-times: how much crust matters
    Dubois F.
    Lambotte S.
    Zaroli C.
    Rivera L.
    Geophysical Journal International, 2019, 218 (03): : 1665 - 1684
  • [30] On the linearity of cross-correlation delay times in finite-frequency tomography
    Mercerat, E. Diego
    Nolet, Guust
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 192 (02) : 681 - 687