3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization

被引:62
|
作者
Liu, Xifeng [1 ,2 ]
George, Matthew N. [1 ,2 ]
Park, Sungjo [3 ,4 ]
Miller, A. Lee, II [2 ]
Gaihre, Bipin [1 ,2 ]
Li, Linli [1 ,2 ]
Waletzki, Brian E. [2 ]
Terzic, Andre [3 ,4 ]
Yaszemski, Michael J. [1 ,2 ]
Lu, Lichun [1 ,2 ]
机构
[1] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Orthoped Surg, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Cardiovasc Dis, Rochester, MN 55905 USA
[4] Mayo Clin, Ctr Regenerat Med, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
3d-printing; Carbon nanotube; Tissue engineering; Osteogenesis; Electrical stimulation; COVALENT CROSS-LINKING; ELECTRICAL-STIMULATION; OSTEOBLAST PROLIFERATION; GRAPHENE OXIDE; CELL FUNCTIONS; IN-VIVO; DIFFERENTIATION; DNA; DISPERSION; EXPRESSION;
D O I
10.1016/j.actbio.2020.04.047
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods are limited in their ability to produce desired microscale features or electrochemical properties in support of robust cell adhesion, proliferation, and differentiation. This study addresses this deficiency by proposing an integrated, one-step, method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). To this end, CNTs were first sonicated with water-soluble single-stranded deoxyribonucleic acid (ssDNA) to generate a negatively charged ssDNA@CNT nano-complex. Concomitantly, 3D-printed poly(propylene fumarate) (PPF) scaffolds were ammonolyzed to introduce free amine groups, which can take on a positive surface charge in water. The ssDNA@CNT nano-complex was then applied to 3D-printed scaffolds through a simple one-step coating utilizing electric-static force. This fast and facile functionalization step resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of pre-osteoblast cells. In addition, the CNT based conductive coating layer enabled modulation of cell behavior through electrical stimuli (ES) leading to cellular proliferation and osteogenic gene marker expression, including alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Collectively, these data provide the foundation for a one-step functionalization method for simple, fast, and effective functionalization of 3D printed scaffolds that support enhanced cell adhesion, proliferation, and differentiation, especially when employed in conjunction with ES. Statement of Significance Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods have limited ability to produce desired features or electrochemical properties in support of robust cell behavior. To address this deficiency, the current study proposed an integrated, one-step method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). This fast and facile functionalization resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of cells on the 3D-printed scaffolds. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 50 条
  • [41] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [42] Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of "Hidden" Importance in the Physical Properties of Scaffolds
    Cubo-Mateo, Nieves
    Rodriguez-Lorenzo, Luis M.
    POLYMERS, 2020, 12 (07) : 1 - 14
  • [43] Enhancing mechanical and biological properties of 3D-printed polylactic acid scaffolds by graphitic carbon nitride addition for bone tissue engineering
    Bakhtiari, Alborz
    Hosseini, Hamid Reza Madaah
    Alizadeh, Reza
    Mohammadi, Mohsen
    Zarei, Masoud
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 308 - 316
  • [44] Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications
    Thangavel, Mahendran
    Selvam, Renold Elsen
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022, 8 (12) : 5060 - 5093
  • [45] Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications
    Rasoulianboroujeni, M.
    Fahimipour, F.
    Shah, P.
    Khoshroo, K.
    Tahriri, M.
    Eslami, H.
    Yadegari, A.
    Dashtimoghadam, E.
    Tayebi, L.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 96 : 105 - 113
  • [46] Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering
    Lee, JiUn
    Kim, Dongyun
    Jang, Chul Ho
    Kim, Geun Hyung
    THERANOSTICS, 2022, 12 (09): : 4051 - 4066
  • [47] Vancomycin-Loaded 3D-Printed Polylactic Acid-Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Perez-Davila, Sara
    Potel-Alvarellos, Carmen
    Carballo, Raquel
    Gonzalez-Rodriguez, Laura
    Lopez-Alvarez, Miriam
    Serra, Julia
    Diaz-Rodriguez, Patricia
    Landin, Mariana
    Gonzalez, Pio
    POLYMERS, 2023, 15 (21)
  • [48] Enhancing bone tissue engineering with 3D-Printed polycaprolactone scaffolds integrated with tragacanth gum/bioactive glass
    Janmohammadi, Mahsa
    Nourbakhsh, Mohammad Sadegh
    Bahraminasab, Marjan
    Tayebi, Lobat
    MATERIALS TODAY BIO, 2023, 23
  • [49] Challenges on optimization of 3D-printed bone scaffolds
    Marjan Bahraminasab
    BioMedical Engineering OnLine, 19
  • [50] Challenges on optimization of 3D-printed bone scaffolds
    Bahraminasab, Marjan
    BIOMEDICAL ENGINEERING ONLINE, 2020, 19 (01)