Application of Multiplicative Regularization for Electrical Impedance Tomography

被引:0
|
作者
Zhang, Ke [1 ]
Li, Maokun [1 ]
Yang, Fan [1 ]
Xu, Shenheng [1 ]
Abubakar, Aria [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Microwave & Digital Commun, Beijing 100084, Peoples R China
[2] Schlumberger, Houston, TX 77478 USA
基金
美国国家科学基金会;
关键词
Electrical impedance tomography (EIT); multiplicative regularization; total variation (TV); Gauss-Newton method; finite-element method (FEM); INVERSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multiplicative regularization scheme with edge-preserving characteristics is applied to the inversion of electrical impedance tomography (EIT) data. This scheme employs a multiplicative cost function of a weighted L2-norm regularization function and the data misfit function. It avoids the use of a weighting factor when the regularization term is added to the cost function and allows an adaptive weighting between data misfit and the regularization function. Gauss-Newton method is used to minimize the multiplicative cost function. In this work, we extend the weighted L2-norm regularization scheme onto a triangular grid with an updated formula for gradient and divergence operators. This scheme is tested using synthetic data. The reconstructed images show good piecewise constant characteristics and noise-resistance performance.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [41] Electrical Conductivity Imaging Using A Hybrid Regularization Method in Magnetic Resonance Electrical Impedance Tomography
    Wang, Zewen
    Qiu, Shufang
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 205 - +
  • [42] Reconstruction of conductivity distribution with electrical impedance tomography based on hybrid regularization method
    Shi, Yanyan
    He, Xiaoyue
    Wang, Meng
    Yang, Bin
    Fu, Feng
    Kong, Xiaolong
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (03)
  • [43] Non-convex lp regularization for sparse reconstruction of electrical impedance tomography
    Wang, Jing
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (07) : 1032 - 1053
  • [44] Reduction of Staircase Effect With Total Generalized Variation Regularization for Electrical Impedance Tomography
    Shi, Yanyan
    Zhang, Xu
    Rao, Zuguang
    Wang, Meng
    Soleimani, Manuchehr
    IEEE SENSORS JOURNAL, 2019, 19 (21) : 9850 - 9858
  • [45] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Henrik Garde
    Stratos Staboulis
    Numerische Mathematik, 2017, 135 : 1221 - 1251
  • [46] Electrical impedance tomography using level set representation and total variational regularization
    Chung, ET
    Chan, TF
    Tai, XC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) : 357 - 372
  • [47] Monotonicity-Based Regularization for Phantom Experiment Data in Electrical Impedance Tomography
    Harrach, Bastian
    Mach Nguyet Minh
    NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 107 - 120
  • [48] A regularization structure based on novel iterative penalty term for electrical impedance tomography
    Wang, Zeying
    Liu, Xiaoyuan
    MEASUREMENT, 2023, 209
  • [49] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Garde, Henrik
    Staboulis, Stratos
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1221 - 1251
  • [50] A modified L1/2 regularization algorithm for electrical impedance tomography
    Fan, Wenru
    Wang, Chi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (01)