Graphs of degree 4 are 5-edge-choosable

被引:1
|
作者
Juvan, M [1 ]
Mohar, B [1 ]
Skrekovski, R [1 ]
机构
[1] Univ Ljubljana, Dept Math, Ljubljana 1111, Slovenia
关键词
graph; edge coloring; list coloring;
D O I
10.1002/(SICI)1097-0118(199911)32:3<250::AID-JGT5>3.0.CO;2-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that every simple graph with maximal degree 4 is 5-edge-choosable. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:250 / 264
页数:15
相关论文
共 50 条
  • [41] THE EDGE-CHROMATIC CLASS OF REGULAR GRAPHS OF DEGREE 4 AND THEIR COMPLEMENTS
    CHETWYND, AG
    HILTON, AJW
    DISCRETE APPLIED MATHEMATICS, 1987, 16 (02) : 125 - 134
  • [42] On the size of edge-coloring critical graphs with maximum degree 4
    Miao, Lianying
    Pang, Shiyou
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5856 - 5859
  • [43] List strong edge coloring of planar graphs with maximum degree 4
    Chen, Ming
    Hu, Jie
    Yu, Xiaowei
    Zhou, Shan
    DISCRETE MATHEMATICS, 2019, 342 (05) : 1471 - 1480
  • [44] Restricted edge connectivity of graphs on degree
    Guo, Litao
    Lin, Bernard L. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (04) : 3955 - 3958
  • [45] REGULAR GRAPHS WITH HIGH EDGE DEGREE
    SPRAGUE, AP
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (03) : 199 - 206
  • [46] On edge-rupture degree of graphs
    Li, Fengwei
    Ye, Qingfang
    Sun, Yuefang
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 282 - 293
  • [47] PLANAR GRAPHS WITHOUT TRIANGULAR 4-CYCLES ARE 4-CHOOSABLE
    Borodin, O., V
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 75 - 79
  • [48] Toroidal graphs containing neither K5- nor 6-cycles are 4-choosable
    Choi, Ilkyoo
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 172 - 186
  • [49] Critically paintable, choosable or colorable graphs
    Riasat, Ayesha
    Schauz, Uwe
    DISCRETE MATHEMATICS, 2012, 312 (22) : 3373 - 3383
  • [50] PLANAR GRAPHS WITHOUT 7-CYCLES ARE 4-CHOOSABLE
    Farzad, Babak
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1179 - 1199