Graphs of degree 4 are 5-edge-choosable

被引:1
|
作者
Juvan, M [1 ]
Mohar, B [1 ]
Skrekovski, R [1 ]
机构
[1] Univ Ljubljana, Dept Math, Ljubljana 1111, Slovenia
关键词
graph; edge coloring; list coloring;
D O I
10.1002/(SICI)1097-0118(199911)32:3<250::AID-JGT5>3.0.CO;2-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that every simple graph with maximal degree 4 is 5-edge-choosable. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:250 / 264
页数:15
相关论文
共 50 条
  • [1] Degree choosable signed graphs
    Schweser, Thomas
    Stiebitz, Michael
    DISCRETE MATHEMATICS, 2017, 340 (05) : 882 - 891
  • [2] Planar graphs with maximum degree Δ ≥ 9 are (Δ+1)-edge-choosable-A short proof
    Cohen, Nathann
    Havet, Frederic
    DISCRETE MATHEMATICS, 2010, 310 (21) : 3049 - 3051
  • [3] PLANAR GRAPHS WITH Δ ≥ 8 ARE (Δ+1)-EDGE-CHOOSABLE
    Bonamy, Marthe
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1735 - 1763
  • [4] On (4,2)-Choosable Graphs
    Meng, Jixian
    Puleo, Gregory J.
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 412 - 428
  • [5] Locally planar graphs are 5-choosable
    DeVos, Matt
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1215 - 1232
  • [6] A characterization of (4,2)-choosable graphs
    Cranston, Daniel W.
    JOURNAL OF GRAPH THEORY, 2019, 92 (04) : 460 - 487
  • [7] Planar graphs without intersecting 5-cycles are 4-choosable
    Hu, Dai-Qiang
    Wu, Jian-Liang
    DISCRETE MATHEMATICS, 2017, 340 (08) : 1788 - 1792
  • [8] Graphs with maximum average degree less than 11/4 are (1,3)-choosable
    Liang, Yu-Chang
    Wong, Tsai-Lien
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2661 - 2671
  • [9] GRAPHS WITH TWO CROSSINGS ARE 5-CHOOSABLE
    Dvorak, Zdenek
    Lidicky, Bernard
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (04) : 1746 - 1753
  • [10] Planar graphs with Δ ≥ 7 and no triangle adjacent to a C4 are minimally edge and total choosable
    2016, Discrete Mathematics and Theoretical Computer Science (17):