Semi-parametric transformation boundary regression models

被引:0
|
作者
Neumeyer, Natalie [1 ]
Selk, Leonie [1 ]
Tillier, Charles [1 ]
机构
[1] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
Box– Cox transformations; Frontier estimation; Minimum distance estimation; Local constant approximation; Boundary models; Nonparametric regression; Yeo– Johnson transformations; NONPARAMETRIC REGRESSION; ASYMPTOTIC EQUIVALENCE;
D O I
10.1007/s10463-019-00731-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of nonparametric regression models with one-sided errors, we consider parametric transformations of the response variable in order to obtain independence between the errors and the covariates. In view of estimating the transformation parameter, we use a minimum distance approach and show the uniform consistency of the estimator under mild conditions. The boundary curve, i.e., the regression function, is estimated applying a smoothed version of a local constant approximation for which we also prove the uniform consistency. We deal with both cases of random covariates and deterministic (fixed) design points. To highlight the applicability of the procedures and to demonstrate their performance, the small sample behavior is investigated in a simulation study using the so-called Yeo-Johnson transformations.
引用
收藏
页码:1287 / 1315
页数:29
相关论文
共 50 条
  • [21] A Semi-Parametric Mode Regression with Censored Data
    S. Khardani
    Mathematical Methods of Statistics, 2019, 28 : 39 - 56
  • [22] Semi-parametric bivariate polychotomous ordinal regression
    Donat, Francesco
    Marra, Giampiero
    STATISTICS AND COMPUTING, 2017, 27 (01) : 283 - 299
  • [23] Semi-parametric rank regression with missing responses
    Bindele, Huybrechts F.
    Abebe, Ash
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 117 - 132
  • [24] A Semi-Parametric Mode Regression with Censored Data
    Khardani, S.
    MATHEMATICAL METHODS OF STATISTICS, 2019, 28 (01) : 39 - 56
  • [25] Semi-parametric bivariate polychotomous ordinal regression
    Francesco Donat
    Giampiero Marra
    Statistics and Computing, 2017, 27 : 283 - 299
  • [26] A semi-parametric regression model with errors in variables
    Zhu, LX
    Cui, HJ
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (02) : 429 - 442
  • [27] Posterior consistency for semi-parametric regression problems
    Amewou-Atisso, M
    Ghosal, S
    Ghosh, JK
    Ramamoorthi, RV
    BERNOULLI, 2003, 9 (02) : 291 - 312
  • [28] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752
  • [29] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [30] Semi-parametric single-index two-part regression models
    Zhou, XH
    Liang, H
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (05) : 1378 - 1390