Estimation of the size of drug-like chemical space based on GDB-17 data

被引:311
|
作者
Polishchuk, P. G. [1 ]
Madzhidov, T. I. [2 ]
Varnek, A. [3 ]
机构
[1] Natl Acad Sci Ukraine, AV Bogatsky Physicochem, UA-65080 Odessa, Ukraine
[2] Kazan Fed Univ, AM Butlerov Inst Chem, Kazan 420008, Russia
[3] Univ Strasbourg, Lab Chemoinformat, F-67000 Strasbourg, France
关键词
Chemical space; Drug-like chemical space; Graphs enumeration; ENUMERATION; DISCOVERY; DIVERSITY; CHEMISTRY; UNIVERSE; ISOMERS; METHANE; DESIGN; NUMBER;
D O I
10.1007/s10822-013-9672-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 x N x logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky's rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M a parts per thousand 10(33) which is in between the numbers estimated by Ertl (10(23)) and by Bohacek (10(60)).
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [41] QSPR Study on the Estimation of Solubility of Drug-like Organic Compounds: A Case of Barbiturates
    Louis, Bruno
    Singh, Jyoti
    Shaik, Basheerulla
    Agrawal, Vijay K.
    Khadikar, Padmakar V.
    CHEMICAL BIOLOGY & DRUG DESIGN, 2009, 74 (02) : 190 - 195
  • [42] QSAR-based permeability model for drug-like compounds
    Gozalbes, Rafael
    Jacewicz, Mary
    Annand, Robert
    Tsaioun, Katya
    Pineda-Lucena, Antonio
    BIOORGANIC & MEDICINAL CHEMISTRY, 2011, 19 (08) : 2615 - 2624
  • [43] Chemical investigation of drug-like compounds from the Australian tree, Neolitsea dealbata
    Tran, Trong D.
    Pham, Ngoc B.
    Fechner, Gregory
    Quinn, Ronald J.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2010, 20 (19) : 5859 - 5863
  • [44] Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs
    Mao, Fei
    Ni, Wei
    Xu, Xiang
    Wang, Hui
    Wang, Jing
    Ji, Min
    Li, Jian
    MOLECULES, 2016, 21 (01):
  • [45] Size estimation of chemical space: how big is it?
    Drew, Kurt L. M.
    Baiman, Hakim
    Khwaounjoo, Prashanna
    Yu, Bo
    Reynisson, Johannes
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2012, 64 (04) : 490 - 495
  • [46] Targeting RNA with Small Molecules: Identification of Selective, RNA-Binding Small Molecules Occupying Drug-Like Chemical Space
    Rizvi, Noreen F.
    Santa Maria, John P., Jr.
    Nahvi, Ali
    Klappenbach, Joel
    Klein, Daniel J.
    Curran, Patrick J.
    Richards, Matthew P.
    Chamberlin, Chad
    Saradjian, Peter
    Burchard, Julja
    Aguilar, Rodrigo
    Lee, Jeannie T.
    Dandliker, Peter J.
    Smith, Graham F.
    Kutchukian, Peter
    Nickbarg, Elliott B.
    SLAS DISCOVERY, 2020, 25 (04) : 384 - 396
  • [47] Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods
    Goel, Manan
    Aggarwal, Rishal
    Sridharan, Bhuvanesh
    Pal, Pradeep Kumar
    Priyakumar, U. Deva
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (02)
  • [48] Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures
    Trager, Richard E.
    Giblock, Paul
    Soltani, Sherwin
    Upadhyay, Amit A.
    Rekapalli, Bhanu
    Peterson, Yuri K.
    DRUG DISCOVERY TODAY, 2016, 21 (10) : 1672 - 1680
  • [49] NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazine A: A Chemical Probe to Study Parkinson's Disease
    Grkovic, Tanja
    Pouwer, Rebecca H.
    Vial, Marie-Laure
    Gambini, Luca
    Noel, Alba
    Hooper, John N. A.
    Wood, Stephen A.
    Mellick, George D.
    Quinn, Ronald J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (24) : 6070 - 6074
  • [50] A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity
    Saravanan, Konda Mani
    Wan, Jiang-Fan
    Dai, Liujiang
    Zhang, Jiajun
    Zhang, John Z. H.
    Zhang, Haiping
    METHODS, 2024, 226 : 164 - 175