Numerical analysis for a new non-conforming linear finite element on quadrilaterals

被引:4
|
作者
Grajewski, Matthias [1 ]
Hron, Jaroslav [1 ]
Turek, Stefan [1 ]
机构
[1] Univ Dortmund, Inst Appl Math, D-44227 Dortmund, Germany
关键词
non-conforming element; iterative solvers; inf-sup condition; Korn's inequality;
D O I
10.1016/j.cam.2005.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting with a short introduction of a new non-conforming linear quadrilateral P-1-finite element which has been recently proposed by Park [A study on locking phenomena in finite element methods, Ph.D. Thesis, Seoul National University, February 2002] and Park and Sheen [P-1-Nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal. 4](2) (2003) 624-640], we examine in detail the numerical behaviour of this element with special emphasis on the treatment of Dirichlet boundary conditions, efficient matrix assembly and solver aspects. Furthermore, we compare the numerical characteristics of P-1 with other low-order finite elements, also regarding its use for the incompressible Navier-Stokes equations. Several test examples show the efficiency and reliability of the proposed methods for elliptic second-order problems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 50
页数:13
相关论文
共 50 条
  • [21] A stabilized non-conforming finite element method for incompressible flow
    Burman, E
    Hansbo, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (23-24) : 2881 - 2899
  • [22] Explicit error bound in a non-conforming finite element method
    Destuynder, P
    Metivet, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (11): : 1081 - 1086
  • [23] Explicit error bound in a non-conforming finite element method
    Destuynder, P.
    Metivet, B.
    1996, (322):
  • [24] Non-conforming hp finite element methods for Stokes problems
    Ben Belgacem, F
    Chilton, LK
    Seshaiyer, P
    RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 133 - 145
  • [25] Non-conforming finite element methods for transmission eigenvalue problem
    Yang, Yidu
    Han, Jiayu
    Bi, Hai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 307 : 144 - 163
  • [26] Explicit Estimation of Error Constants Appearing in Non-Conforming Linear Triangular Finite Element Method
    Xuefeng Liu
    Fumio Kikuchi
    Applications of Mathematics, 2018, 63 : 381 - 397
  • [27] Explicit Estimation of Error Constants Appearing in Non-Conforming Linear Triangular Finite Element Method
    Liu, Xuefeng
    Kikuchi, Fumio
    APPLICATIONS OF MATHEMATICS, 2018, 63 (04) : 381 - 397
  • [28] The application of the Wilson non-conforming element in Numerical Manifold Method
    Cheng, YM
    Zhang, YH
    FRONTIERS OF ROCK MECHANICS AND SUSTAINABLE DEVELOPMENT IN THE 21ST CENTURY, 2001, : 393 - 395
  • [29] Bifurcation buckling of isotropic annular disc using conforming and non-conforming finite element
    Kumar, Ashwani
    Kadoli, Ravikiran
    Joladarashi, Sharnappa
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 2460 - 2467
  • [30] A comparison of the non-conforming and conforming sector finite element for free vibration of circular discs
    Avvaru, Hari Tej
    Joladarashi, Sharanappa
    Kadoli, Ravikiran
    MATERIALS TODAY-PROCEEDINGS, 2021, 38 : 2899 - 2906