Electromagnetic resolution of curvature and gravitational instantons

被引:0
|
作者
Dadhich, NK [1 ]
Marathe, KB
Martucci, G
机构
[1] Interuniv Ctr Astron & Astrophys, Poona 411007, Maharashtra, India
[2] CUNY Brooklyn Coll, Dept Math, Brooklyn, NY 11210 USA
[3] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the electromagnetic resolution of the Riemann curvature on a space-time manifold nl with metric g into its electric and magnetic parts relative to a unit timelike vector with respect to g. There exists a duality transformation between the active and passive electric parts which leaves invariant a subclass of field equations which correspond to the generalized gravitational instanton equations. We also discuss various geometric formulations of the equations of gravitational instantons and their generalization which includes as a special case the classical vacuum Einstein equations. Same special solutions and their physical significance are also considered.
引用
收藏
页码:793 / 806
页数:14
相关论文
共 50 条
  • [1] Gravitational instantons of constant curvature
    Ratcliffe, JG
    Tschantz, ST
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2613 - 2627
  • [2] Gravitational instantons with faster than quadratic curvature decay (III)
    Gao Chen
    Xiuxiong Chen
    [J]. Mathematische Annalen, 2021, 380 : 687 - 717
  • [3] Gravitational instantons with faster than quadratic curvature decay (III)
    Chen, Gao
    Chen, Xiuxiong
    [J]. MATHEMATISCHE ANNALEN, 2021, 380 (1-2) : 687 - 717
  • [4] Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry
    Biquard, Olivier
    Gauduchon, Paul
    LeBrun, Claude
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024,
  • [5] Gravitational instantons with faster than quadratic curvature decay (II)
    Chen, Gao
    Chen, Xiuxiong
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 756 : 259 - 284
  • [6] Gravitational instantons with faster than quadratic curvature decay. I
    Chen, Gao
    Chen, Xiuxiong
    [J]. ACTA MATHEMATICA, 2021, 227 (02) : 263 - 307
  • [7] GRAVITATIONAL INSTANTONS
    PERRY, MJ
    [J]. ANNALS OF MATHEMATICS STUDIES, 1982, (102): : 603 - 630
  • [8] GRAVITATIONAL INSTANTONS
    EGUCHI, T
    HANSON, AJ
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1979, 11 (05) : 315 - 320
  • [9] GRAVITATIONAL INSTANTONS
    HAWKING, SW
    [J]. PHYSICS LETTERS A, 1977, 60 (02) : 81 - 83
  • [10] Gravitational instantons
    Nutku, Y
    Sheftel, MB
    Malykh, AA
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (03) : L59 - L63