On the continuation of degenerate periodic orbits in Hamiltonian systems

被引:4
|
作者
Meletlidou, E [1 ]
Stagika, G [1 ]
机构
[1] Univ Thessaloniki, Thessaloniki 54124, Greece
来源
REGULAR & CHAOTIC DYNAMICS | 2006年 / 11卷 / 01期
关键词
near-integrable Hamiltonian systems; periodic orbits; resonance;
D O I
10.1070/RD2006v011n01ABEH000339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The continuation of non-isolated periodic orbits lying on the resonant invariant tori of an integrable Hamiltonian system with respect to a small perturbative parameter cannot be proved by a direct application of the continuation theorem, since their monodromy matrix possesses more than a single pair of unit eigenvalues. In this case one may use Poincare's theorem which proves that, if the integrable part of the Hamiltonian is non-degenerate and the average value of the perturbing function, evaluated along the unperturbed periodic orbits, possesses a simple extremum on such an orbit, then this orbit can be analytically continued with respect to the perturbation. In the present paper we prove a criterion for the continuation of the non-isolated periodic orbits, for which this average value is constant along the periodic orbits of the resonant torus and Poincare's theorem is not applicable. We apply the results in two such systems of two degrees of freedom.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [31] A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems
    Ortega, JP
    Ratiu, TS
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (02) : 131 - 159
  • [32] On the continuation of degenerate periodic orbits via normal form: Lower dimensional resonant tori
    Sansottera, M.
    Danesi, V
    Penati, T.
    Paleari, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [33] On the continuation of degenerate periodic orbits via normal form: full dimensional resonant tori
    Penati, T.
    Sansottera, M.
    Danesi, V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 198 - 224
  • [34] Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
    Net, M.
    Sanchez, J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 674 - 698
  • [35] Continuation of periodic orbits in large-scale dissipative systems
    Sánchez, J
    Net, M
    García-Archilla, B
    Simó, C
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 625 - 630
  • [36] ON THE BIFURCATION OF THE PERIODIC-ORBITS IN CERTAIN HAMILTONIAN-SYSTEMS
    SAITO, N
    TAKEDA, T
    SHIMIZU, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (02) : 423 - 430
  • [37] Mean Index for Non-periodic Orbits in Hamiltonian Systems
    Xi Jun HU
    Li WU
    ActaMathematicaSinica,EnglishSeries, 2022, (01) : 291 - 310
  • [38] Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems
    Guirao, Juan L. G.
    Llibre, Jaume
    Vera, Juan A.
    CHAOS SOLITONS & FRACTALS, 2013, 57 : 105 - 111
  • [39] Holomorphic cylinders with Lagrangian boundaries and periodic orbits of Hamiltonian systems
    Gatien, D
    TOPOLOGY AND ITS APPLICATIONS, 1998, 88 (1-2) : 147 - 154
  • [40] Mean Index for Non-periodic Orbits in Hamiltonian Systems
    Hu, Xi Jun
    Wu, Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (01) : 291 - 310