On the continuation of degenerate periodic orbits in Hamiltonian systems

被引:4
|
作者
Meletlidou, E [1 ]
Stagika, G [1 ]
机构
[1] Univ Thessaloniki, Thessaloniki 54124, Greece
来源
REGULAR & CHAOTIC DYNAMICS | 2006年 / 11卷 / 01期
关键词
near-integrable Hamiltonian systems; periodic orbits; resonance;
D O I
10.1070/RD2006v011n01ABEH000339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The continuation of non-isolated periodic orbits lying on the resonant invariant tori of an integrable Hamiltonian system with respect to a small perturbative parameter cannot be proved by a direct application of the continuation theorem, since their monodromy matrix possesses more than a single pair of unit eigenvalues. In this case one may use Poincare's theorem which proves that, if the integrable part of the Hamiltonian is non-degenerate and the average value of the perturbing function, evaluated along the unperturbed periodic orbits, possesses a simple extremum on such an orbit, then this orbit can be analytically continued with respect to the perturbation. In the present paper we prove a criterion for the continuation of the non-isolated periodic orbits, for which this average value is constant along the periodic orbits of the resonant torus and Poincare's theorem is not applicable. We apply the results in two such systems of two degrees of freedom.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [1] Continuation of periodic orbits in conservative and Hamiltonian systems
    Muñoz-Almaraz, FJ
    Freire, E
    Galán, J
    Doedel, E
    Vanderbauwhede, A
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (1-2) : 1 - 38
  • [2] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    Galan-Vioque, J.
    Almaraz, F. J. M.
    Macias, E. F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 2705 - 2722
  • [3] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    J. Galan-Vioque
    F. J. M. Almaraz
    E. F. Macías
    The European Physical Journal Special Topics, 2014, 223 : 2705 - 2722
  • [4] Continuation of relative periodic orbits in a class of triatomic Hamiltonian systems
    James, Guillaume
    Noble, Pascal
    Sire, Yannick
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1237 - 1264
  • [5] Numerical Continuation of Hamiltonian Relative Periodic Orbits
    Claudia Wulff
    Andreas Schebesch
    Journal of Nonlinear Science, 2008, 18 : 343 - 390
  • [6] Numerical Continuation of Hamiltonian Relative Periodic Orbits
    Wulff, Claudia
    Schebesch, Andreas
    JOURNAL OF NONLINEAR SCIENCE, 2008, 18 (04) : 343 - 390
  • [7] On the periodic orbits of Hamiltonian systems
    Llibre, Jaume
    Rodrigues, Ana
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [8] HYPERBOLIC PERIODIC ORBITS IN HAMILTONIAN SYSTEMS
    ROD, DL
    PECELLI, G
    CHURCHILL, RC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A515 - A516
  • [9] PERIODIC ORBITS FOR CONVEX HAMILTONIAN SYSTEMS
    WEINSTEIN, A
    ANNALS OF MATHEMATICS, 1978, 108 (03) : 507 - 518
  • [10] STABLE PERIODIC ORBITS OF HAMILTONIAN SYSTEMS
    KIRCHGRABER, U
    MECHANICS RESEARCH COMMUNICATIONS, 1976, 3 (04) : 297 - 301