DTI Quality Control Assessment via Error Estimation From Monte Carlo Simulations

被引:3
|
作者
Farzinfar, Mahshid [1 ]
Li, Yin
Verde, Audrey R. [1 ]
Oguz, Ipek [1 ]
Gerig, Guido
Styner, Martin A. [1 ]
机构
[1] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27599 USA
来源
关键词
Diffusion Tensor Imaging; Quality Control and Monte Carlo Simulation; DIFFUSION TENSOR; TRACTOGRAPHY; MRI;
D O I
10.1117/12.2006925
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Diffusion Tensor Imaging (DTI) is currently the state of the art method for characterizing the microscopic tissue structure of white matter in normal or diseased brain in vivo. DTI is estimated from a series of Diffusion Weighted Imaging (DWI) volumes. DWIs suffer from a number of artifacts which mandate stringent Quality Control (QC) schemes to eliminate lower quality images for optimal tensor estimation. Conventionally, QC procedures exclude artifact-affected DWIs from subsequent computations leading to a cleaned, reduced set of DWIs, called DWI-QC. Often, a rejection threshold is heuristically/empirically chosen above which the entire DWI-QC data is rendered unacceptable and thus no DTI is computed. In this work, we have devised a more sophisticated, Monte-Carlo (MC) simulation based method for the assessment of resulting tensor properties. This allows for a consistent, error-based threshold definition in order to reject/accept the DWI-QC data. Specifically, we propose the estimation of two error metrics related to directional distribution bias of Fractional Anisotropy (FA) and the Principal Direction (PD). The bias is modeled from the DWI-QC gradient information and a Rician noise model incorporating the loss of signal due to the DWI exclusions. Our simulations further show that the estimated bias can be substantially different with respect to magnitude and directional distribution depending on the degree of spatial clustering of the excluded DWIs. Thus, determination of diffusion properties with minimal error requires an evenly distributed sampling of the gradient directions before and after QC.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Growth of polymer brushes by "grafting from" via ATRP - Monte Carlo simulations
    Polanowski, Piotr
    Halagan, Krzysztof
    Pietrasik, Joanna
    Jeszka, Jeremiasz K.
    Matyjaszewski, Krzysztof
    POLYMER, 2017, 130 : 267 - 279
  • [32] Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance
    Hickey, John M.
    Veerkamp, Roel F.
    Calus, Mario P. L.
    Mulder, Han A.
    Thompson, Robin
    GENETICS SELECTION EVOLUTION, 2009, 41
  • [33] Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance
    John M Hickey
    Roel F Veerkamp
    Mario PL Calus
    Han A Mulder
    Robin Thompson
    Genetics Selection Evolution, 41
  • [34] Practical Error Estimation for Denoised Monte Carlo Image Synthesis
    Firmino, Arthur
    Ramamoorthi, Ravi
    Frisvad, Jeppe Revall
    Jensen, Henrik Wann
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [35] Estimation of the Statistical Error of the Direct Simulation Monte Carlo Method
    Plotnikov, M. Yu.
    Shkarupa, E. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (02) : 335 - 344
  • [36] General and Robust Error Estimation and Reconstruction for Monte Carlo Rendering
    Bauszat, Pablo
    Eisemann, Martin
    Eisemann, Elmar
    Magnor, Marcus
    COMPUTER GRAPHICS FORUM, 2015, 34 (02) : 597 - 608
  • [37] Estimation of error propagation in Monte-Carlo burnup calculations
    Takeda, T
    Hirokawa, N
    Noda, T
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1999, 36 (09) : 738 - 745
  • [38] Estimation of the statistical error of the direct simulation Monte Carlo method
    M. Yu. Plotnikov
    E. V. Shkarupa
    Computational Mathematics and Mathematical Physics, 2010, 50 : 335 - 344
  • [39] Accuracy control in Monte Carlo simulations of particle breakage
    Devi, Jherna
    Kotalczyk, Gregor
    Kruis, Frank Einar
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 31 (03) : 278 - 291
  • [40] Adaptive Reweighted Variance Estimation for Monte Carlo Eigenvalue Simulations
    Jin, Lei
    Banerjee, Kaushik
    NUCLEAR SCIENCE AND ENGINEERING, 2020, 194 (03) : 190 - 206